Source code for grid2op.Observation.noisyObservation

# Copyright (c) 2019-2020, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.

import numpy as np

from grid2op.dtypes import dt_int, dt_float
from grid2op.Observation.baseObservation import BaseObservation
from grid2op.Observation.completeObservation import CompleteObservation


[docs]class NoisyObservation(BaseObservation): """ This class represent a complete observation (in the sens that all attributes of an :attr:`CompleteObservation` are accessible) but some of them are "noisy". That is, the observation that the agent has access to is not exactly the same as the environment internal values. The affected attributes are : - load_p: \*= lognormal (to keep the sign) - load_q: \*= lognormal (to keep the sign) - gen_p: \*= lognormal (to keep the sign) - gen_q: \*= lognormal (to keep the sign) - p_or += normal - p_ex += normal - q_or += normal - q_ex += normal - a_or: \*= lognormal (to keep the sign) - a_ex: \*= lognormal (to keep the sign) - rho: same noise as a_or (because rho is not "physical" it's the result of a computation) - storage_power += normal It can be used to emuate the acquisition of data coming from noisy sensors for example. Examples -------- It can be used as follow: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name kwargs_observation = {"sigma_load_p": 0.1, "sigma_gen_p": 1.0} # noise of the observation env = grid2op.make(env_name, observation_class=NoisyObservation, kwargs_observation=kwargs_observation) # do whatever you want with env ! """ attr_list_vect = CompleteObservation.attr_list_vect attr_list_json = CompleteObservation.attr_list_json attr_list_set = CompleteObservation.attr_list_set
[docs] def __init__( self, obs_env=None, action_helper=None, random_prng=None, kwargs_env=None, sigma_load_p=0.01, # multiplicative (log normal) sigma_load_q=0.01, # multiplicative (log normal) sigma_gen_p=0.01, # multiplicative (log normal) sigma_gen_q=0.01, # multiplicative (log normal) sigma_a=0.01, # multiplicative (log normal) same for a_or and a_ex sigma_p=0.1, # additive (normal) same for p_or and p_ex sigma_q=0.1, # additive (normal) same for q_or and q_ex sigma_storage=0.1, # additive (normal) ): BaseObservation.__init__( self, obs_env=obs_env, action_helper=action_helper, random_prng=random_prng, kwargs_env=kwargs_env ) self._dictionnarized = None self._sigma_load_p = sigma_load_p # multiplicative (log normal) self._sigma_load_q = sigma_load_q # multiplicative (log normal) self._sigma_gen_p = sigma_gen_p # multiplicative (log normal) self._sigma_gen_q = sigma_gen_q # multiplicative (log normal) self._sigma_a = sigma_a # multiplicative (log normal) same for a_or and a_ex self._sigma_p = sigma_p # additive (normal) same for p_or and p_ex self._sigma_q = sigma_q # additive (normal) same for q_or and q_ex self._sigma_storage = sigma_storage # additive (normal)
[docs] def update(self, env, with_forecast=True): # reset the matrices self._reset_matrices() self.reset() # update as if the data were complete self._update_obs_complete(env, with_forecast=with_forecast) # multiplicative noise mult_load_p = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_load_p, size=self.load_p.shape ) self.load_p[:] *= mult_load_p mult_load_q = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_load_q, size=self.load_p.shape ) self.load_q[:] *= mult_load_q mult_gen_p = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_gen_p, size=self.gen_p.shape ) self.gen_p[:] *= mult_gen_p mult_gen_q = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_gen_q, size=self.gen_q.shape ) self.gen_q[:] *= mult_gen_q mult_aor = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_a, size=self.a_or.shape ) self.a_or[:] *= mult_aor self.rho[:] *= mult_aor mult_a_ex = self.random_prng.lognormal( mean=0.0, sigma=self._sigma_a, size=self.a_ex.shape ) self.a_ex[:] *= mult_a_ex # additive noise add_por = self.random_prng.normal( loc=0.0, scale=self._sigma_p, # 0.01 * np.abs(self.p_or), size=self.p_or.shape, ) self.p_or[:] += add_por add_pex = self.random_prng.normal( loc=0.0, scale=self._sigma_p, # 0.01 * np.abs(self.p_ex), size=self.p_or.shape, ) self.p_ex[:] += add_pex add_qor = self.random_prng.normal( loc=0.0, scale=self._sigma_q, # 0.01 * np.abs(self.q_or), size=self.p_or.shape, ) self.q_or[:] += add_qor add_qex = self.random_prng.normal( loc=0.0, scale=self._sigma_q, # 0.01 * np.abs(self.q_ex), size=self.p_or.shape, ) self.q_ex[:] += add_qex add_storp = self.random_prng.normal( loc=0.0, scale=self._sigma_storage, # 0.01 * np.abs(self.storage_power), size=self.storage_power.shape, ) self.storage_power[:] += add_storp