Source code for grid2op.Observation.baseObservation

# Copyright (c) 2019-2020, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.

import copy
import datetime
import warnings
import networkx
from abc import abstractmethod
import numpy as np
from scipy.sparse import csr_matrix
from typing import Optional
from packaging import version

from typing import Dict, Union, Tuple, List, Optional, Any, Literal
try:
    from typing import Self
except ImportError:
    from typing_extensions import Self

import grid2op  # for type hints
from grid2op.typing_variables import STEP_INFO_TYPING
from grid2op.dtypes import dt_int, dt_float, dt_bool
from grid2op.Exceptions import (
    Grid2OpException,
    NoForecastAvailable,
    BaseObservationError,
)
from grid2op.Space import GridObjects

# TODO have a method that could do "forecast" by giving the _injection by the agent,
# TODO if he wants to make custom forecasts

# TODO fix "bug" when action not initalized it should return nan in to_vect

# TODO be consistent with gen_* and prod_* also in dictionaries

ERROR_ONLY_SINGLE_EL = "You can only the inspect the effect of an action on one single element"

[docs]class BaseObservation(GridObjects): """ Basic class representing an observation. All observation must derive from this class and implement all its abstract methods. Attributes ---------- action_helper: :class:`grid2op.Action.ActionSpace` A representation of the possible action space. year: ``int`` The current year month: ``int`` The current month (1 = january, 12 = december) day: ``int`` The current day of the month (1 = first day of the month) hour_of_day: ``int`` The current hour of the day (from O to 23) minute_of_hour: ``int`` The current minute of the current hour (from 0 to 59) day_of_week: ``int`` The current day of the week (monday = 0 and sunday = 6) support_theta: ``bool`` This flag indicates whether the backend supports the retrieval of the voltage angle. If so (which is the case for most backend) then some supplementary attributes are available, such as :attr:`BaseObservation.gen_theta`, :attr:`BaseObservation.load_theta`, :attr:`BaseObservation.storage_theta`, :attr:`BaseObservation.theta_or` or :attr:`BaseObservation.theta_ex` . gen_p: :class:`numpy.ndarray`, dtype:float The active production value of each generator (expressed in MW). (the old name "prod_p" is still usable) gen_q: :class:`numpy.ndarray`, dtype:float The reactive production value of each generator (expressed in MVar). (the old name "prod_q" is still usable) gen_v: :class:`numpy.ndarray`, dtype:float The voltage magnitude of the bus to which each generator is connected (expressed in kV). (the old name "prod_v" is still usable) gen_theta: :class:`numpy.ndarray`, dtype:float The voltage angle (in degree) of the bus to which each generator is connected. Only availble if the backend supports the retrieval of voltage angles (see :attr:`BaseObservation.support_theta`). load_p: :class:`numpy.ndarray`, dtype:float The active load value of each consumption (expressed in MW). load_q: :class:`numpy.ndarray`, dtype:float The reactive load value of each consumption (expressed in MVar). load_v: :class:`numpy.ndarray`, dtype:float The voltage magnitude of the bus to which each consumption is connected (expressed in kV). load_theta: :class:`numpy.ndarray`, dtype:float The voltage angle (in degree) of the bus to which each consumption is connected. Only availble if the backend supports the retrieval of voltage angles (see :attr:`BaseObservation.support_theta`). p_or: :class:`numpy.ndarray`, dtype:float The active power flow at the origin side of each powerline (expressed in MW). q_or: :class:`numpy.ndarray`, dtype:float The reactive power flow at the origin side of each powerline (expressed in MVar). v_or: :class:`numpy.ndarray`, dtype:float The voltage magnitude at the bus to which the origin side of each powerline is connected (expressed in kV). theta_or: :class:`numpy.ndarray`, dtype:float The voltage angle at the bus to which the origin side of each powerline is connected (expressed in degree). Only availble if the backend supports the retrieval of voltage angles (see :attr:`BaseObservation.support_theta`). a_or: :class:`numpy.ndarray`, dtype:float The current flow at the origin side of each powerline (expressed in A). p_ex: :class:`numpy.ndarray`, dtype:float The active power flow at the extremity side of each powerline (expressed in MW). q_ex: :class:`numpy.ndarray`, dtype:float The reactive power flow at the extremity side of each powerline (expressed in MVar). v_ex: :class:`numpy.ndarray`, dtype:float The voltage magnitude at the bus to which the extremity side of each powerline is connected (expressed in kV). theta_ex: :class:`numpy.ndarray`, dtype:float The voltage angle at the bus to which the extremity side of each powerline is connected (expressed in degree). Only availble if the backend supports the retrieval of voltage angles (see :attr:`BaseObservation.support_theta`). a_ex: :class:`numpy.ndarray`, dtype:float The current flow at the extremity side of each powerline (expressed in A). rho: :class:`numpy.ndarray`, dtype:float The capacity of each powerline. It is defined at the observed current flow divided by the thermal limit of each powerline (no unit) topo_vect: :class:`numpy.ndarray`, dtype:int For each object (load, generator, ends of a powerline) it gives on which bus this object is connected in its substation. See :func:`grid2op.Backend.Backend.get_topo_vect` for more information. line_status: :class:`numpy.ndarray`, dtype:bool Gives the status (connected / disconnected) for every powerline (``True`` at position `i` means the powerline `i` is connected) timestep_overflow: :class:`numpy.ndarray`, dtype:int Gives the number of time steps since a powerline is in overflow. time_before_cooldown_line: :class:`numpy.ndarray`, dtype:int For each powerline, it gives the number of time step the powerline is unavailable due to "cooldown" (see :attr:`grid2op.Parameters.Parameters.NB_TIMESTEP_COOLDOWN_LINE` for more information). 0 means the an action will be able to act on this same powerline, a number > 0 (eg 1) means that an action at this time step cannot act on this powerline (in the example the agent have to wait 1 time step) time_before_cooldown_sub: :class:`numpy.ndarray`, dtype:int Same as :attr:`BaseObservation.time_before_cooldown_line` but for substations. For each substation, it gives the number of timesteps to wait before acting on this substation (see see :attr:`grid2op.Parameters.Parameters.NB_TIMESTEP_COOLDOWN_SUB` for more information). time_next_maintenance: :class:`numpy.ndarray`, dtype:int For each powerline, it gives the time of the next planned maintenance. For example if there is: - `1` at position `i` it means that the powerline `i` will be disconnected for maintenance operation at the next time step. - `0` at position `i` means that powerline `i` is disconnected from the powergrid for maintenance operation at the current time step. - `-1` at position `i` means that powerline `i` will not be disconnected for maintenance reason for this episode. - `k` > 1 at position `i` it means that the powerline `i` will be disconnected for maintenance operation at in `k` time steps When a powerline is "in maintenance", it cannot be reconnected by the `Agent` before the end of this maintenance. duration_next_maintenance: :class:`numpy.ndarray`, dtype:int For each powerline, it gives the number of time step that the maintenance will last (if any). This means that, if at position `i` of this vector: - there is a `0`: the powerline is not disconnected from the grid for maintenance - there is a `1`, `2`, ... the powerline will be disconnected for at least `1`, `2`, ... timestep (**NB** in all case, the powerline will stay disconnected until a :class:`grid2op.BaseAgent.BaseAgent` performs the proper :class:`grid2op.BaseAction.BaseAction` to reconnect it). When a powerline is "in maintenance", it cannot be reconnected by the `Agent` before the end of this maintenance. target_dispatch: :class:`numpy.ndarray`, dtype:float For **each** generators, it gives the target redispatching, asked by the agent. This is the sum of all redispatching asked by the agent for during all the episode. It for each generator it is a number between: - pmax and pmax. Note that there is information about all generators there, even the one that are not dispatchable. actual_dispatch: :class:`numpy.ndarray`, dtype:float For **each** generators, it gives the redispatching currently implemented by the environment. Indeed, the environment tries to implement at best the :attr:`BaseObservation.target_dispatch`, but sometimes, due to physical limitation (pmin, pmax, ramp min and ramp max) it cannot. In this case, only the best possible redispatching is implemented at the current time step, and this is what this vector stores. Note that there is information about all generators there, even the one that are not dispatchable. storage_charge: :class:`numpy.ndarray`, dtype:float The actual 'state of charge' of each storage unit, expressed in MWh. storage_power_target: :class:`numpy.ndarray`, dtype:float For each storage units, give the setpoint of production / consumption as given by the agent storage_power: :class:`numpy.ndarray`, dtype:float Give the actual storage production / loads at the given state. storage_theta: :class:`numpy.ndarray`, dtype:float The voltage angle (in degree) of the bus to which each storage units is connected. Only availble if the backend supports the retrieval of voltage angles (see :attr:`BaseObservation.support_theta`). gen_p_before_curtail: :class:`numpy.ndarray`, dtype:float Give the production of renewable generator there would have been if no curtailment were applied (**NB** it returns 0.0 for non renewable generators that cannot be curtailed) curtailment_limit: :class:`numpy.ndarray`, dtype:float Limit (in ratio of gen_pmax) imposed on each renewable generator as set by the agent. It is always 1. if no curtailment actions is acting on the generator. This is the "curtailment" given in the action by the agent. curtailment_limit_effective: :class:`numpy.ndarray`, dtype:float Limit (in ratio of gen_pmax) imposed on each renewable generator effectively imposed by the environment. It matches :attr:`BaseObservation.curtailment_limit` if `param.LIMIT_INFEASIBLE_CURTAILMENT_STORAGE_ACTION` is ``False`` (default) otherwise the environment is able to limit the curtailment actions if too much power would be needed to compensate the "loss" of generation due to renewables. It is always 1. if no curtailment actions is acting on the generator. curtailment_mw: :class:`numpy.ndarray`, dtype:float Gives the amount of power curtailed for each generator (it is 0. for all non renewable generators) This is NOT the "curtailment" given in the action by the agent. curtailment: :class:`numpy.ndarray`, dtype:float Give the power curtailed for each generator. It is expressed in ratio of gen_pmax (so between 0. - meaning no curtailment in effect for this generator - to 1.0 - meaning this generator should have produced pmax, but a curtailment action limits it to 0.) This is NOT the "curtailment" given in the action by the agent. current_step: ``int`` Current number of step performed up until this observation (NB this is not given in the observation if it is transformed into a vector) max_step: ``int`` Maximum number of steps possible for this episode delta_time: ``float`` Time (in minutes) between the last step and the current step (usually constant in an episode, even in an environment) is_alarm_illegal: ``bool`` whether the last alarm has been illegal (due to budget constraint). It can only be ``True`` if an alarm was raised by the agent on the previous step. Otherwise it is always ``False`` (warning: /!\\\\ Only valid with "l2rpn_icaps_2021" environment /!\\\\) time_since_last_alarm: ``int`` Number of steps since the last successful alarm has been raised. It is `-1` if no alarm has been raised yet. (warning: /!\\\\ Only valid with "l2rpn_icaps_2021" environment /!\\\\) last_alarm: :class:`numpy.ndarray`, dtype:int For each zones, gives how many steps since the last alarm was raised successfully for this zone (warning: /!\\\\ Only valid with "l2rpn_icaps_2021" environment /!\\\\) attention_budget: ``int`` The current attention budget was_alarm_used_after_game_over: ``bool`` Was the last alarm used to compute anything related to the attention budget when there was a game over. It can only be set to ``True`` if the observation corresponds to a game over, but not necessarily. (warning: /!\\\\ Only valid with "l2rpn_icaps_2021" environment /!\\\\) gen_margin_up: :class:`numpy.ndarray`, dtype:float From how much can you increase each generators production between this step and the next. It is always 0. for non renewable generators. For the others it is defined as `np.minimum(type(self).gen_pmax - self.gen_p, self.gen_max_ramp_up)` gen_margin_down: :class:`numpy.ndarray`, dtype:float From how much can you decrease each generators production between this step and the next. It is always 0. for non renewable generators. For the others it is defined as `np.minimum(self.gen_p - type(self).gen_pmin, self.gen_max_ramp_down)` active_alert: :class:`numpy.ndarray`, dtype:bool .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 This attribute gives the lines "under alert" at the given observation. It is only relevant for the "real" environment and not for `obs.simulate` nor `obs.get_forecast_env` time_since_last_alert: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 Give the time since an alert has been raised for each powerline. If you just raise an alert for attackable line `i` then obs.time_since_last_alert[i] = 0 (and counter increase by 1 each step). If attackable line `i` has never been "under alert" then obs.time_since_last_alert[i] = -1 alert_duration: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 Give the time since an alert has started for all attackable line. If you just raise an alert for attackable line `i` then obs.time_since_last_alert[i] = 1 and this counter increase by 1 each step as long as the agent continues to "raise an alert on attackable line i" When the attackable line `i` is not under an alert then obs.time_since_last_alert[i] = 0 total_number_of_alert: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 This attribute stores, since the beginning of the current episode, the total number of alerts (here 1 alert = one alert for 1 powerline for 1 step) sent by the agent. time_since_last_attack: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 Similar to `time_since_last_alert` but for the attack. For each attackable line `i` it counts the number of steps since the powerline has been attacked: - obs.time_since_last_attack[i] = -1 then attackable line `i` has never been attacked - obs.time_since_last_attack[i] = 0 then attackable line `i` has been attacked "for the first time" this step - obs.time_since_last_attack[i] = 1 then attackable line `i` has been attacked "for the first time" the previous step - obs.time_since_last_attack[i] = 2 then attackable line `i` has been attacked "for the first time" 2 steps ago .. note:: An attack "for the first time" is NOT an attack "for the first time of the scenario". Indeed, for this attribute, if a powerline is under attack for say 5 consecutive steps, then the opponent stops its attack on this line and says 6 or 7 steps later it start again to attack it then obs.time_since_last_attack[i] = 0 at the "first time" the opponent attacks again this powerline. was_alert_used_after_attack: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. danger:: This attribute is only filled if you use a compatible reward (*eg* :class:`grid2op.Reward.AlertReward`) as the main reward (or a "combined" reward with this reward being part of it) .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 For each attackable line `i` it says: - obs.was_alert_used_after_attack[i] = 0 => attackable line i has not been attacked - obs.was_alert_used_after_attack[i] = -1 => attackable line i has been attacked and for the last attack the INCORRECT alert was sent (meaning that: if the agent survives, it sends an alert and if the agent died it fails to send an alert) - obs.was_alert_used_after_attack[i] = +1 => attackable line i has been attacked and for the last attack the CORRECT alert was sent (meaning that: if the agent survives, it did not send an alert and if the agent died it properly sent an alert) By "last attack", we mean the last attack that occured until now. attack_under_alert: :class:`numpy.ndarray`, dtype:int .. warning:: Only available if the environment supports the "alert" feature (*eg* "l2rpn_idf_2023"). .. seealso:: :ref:`grid2op-alert-module` section of the doc for more information .. versionadded:: 1.9.1 For each attackable line `i` it says: - obs.attack_under_alert[i] = 0 => attackable line i has not been attacked OR it has been attacked before the relevant window (`env.parameters.ALERT_TIME_WINDOW`) - obs.attack_under_alert[i] = -1 => attackable line i has been attacked and (before the attack) no alert was sent (so your agent expects to survive at least `env.parameters.ALERT_TIME_WINDOW` steps) - obs.attack_under_alert[i] = +1 => attackable line i has been attacked and (before the attack) an alert was sent (so your agent expects to "game over" within the next `env.parameters.ALERT_TIME_WINDOW` steps) _shunt_p: :class:`numpy.ndarray`, dtype:float Shunt active value (only available if shunts are available) (in MW) _shunt_q: :class:`numpy.ndarray`, dtype:float Shunt reactive value (only available if shunts are available) (in MVAr) _shunt_v: :class:`numpy.ndarray`, dtype:float Shunt voltage (only available if shunts are available) (in kV) _shunt_bus: :class:`numpy.ndarray`, dtype:float Bus (-1 disconnected, 1 for bus 1, 2 for bus 2) at which each shunt is connected (only available if shunts are available) """ _attr_eq = [ "line_status", "topo_vect", "timestep_overflow", "gen_p", "gen_q", "gen_v", "load_p", "load_q", "load_v", "p_or", "q_or", "v_or", "a_or", "p_ex", "q_ex", "v_ex", "a_ex", "time_before_cooldown_line", "time_before_cooldown_sub", "time_next_maintenance", "duration_next_maintenance", "target_dispatch", "actual_dispatch", "_shunt_p", "_shunt_q", "_shunt_v", "_shunt_bus", # storage "storage_charge", "storage_power_target", "storage_power", # curtailment "gen_p_before_curtail", "curtailment", "curtailment_limit", "curtailment_limit_effective", # attention budget "is_alarm_illegal", "time_since_last_alarm", "last_alarm", "attention_budget", "was_alarm_used_after_game_over", # line alert "active_alert", "attack_under_alert", "time_since_last_alert", "alert_duration", "total_number_of_alert", "time_since_last_attack", "was_alert_used_after_attack", # gen up / down "gen_margin_up", "gen_margin_down", ] attr_list_vect = None # value to assess if two observations are equal _tol_equal = 1e-3
[docs] def __init__(self, obs_env=None, action_helper=None, random_prng=None, kwargs_env=None): GridObjects.__init__(self) self._is_done = True self.random_prng = random_prng self.action_helper = action_helper # handles the forecasts here self._forecasted_grid_act = {} self._forecasted_inj = [] self._env_internal_params = {} from grid2op.Environment._obsEnv import _ObsEnv self._obs_env : _ObsEnv = obs_env self._ptr_kwargs_env : Dict = kwargs_env # calendar data self.year = dt_int(1970) self.month = dt_int(1) self.day = dt_int(1) self.hour_of_day = dt_int(0) self.minute_of_hour = dt_int(0) self.day_of_week = dt_int(0) cls = type(self) self.timestep_overflow = np.empty(shape=(cls.n_line,), dtype=dt_int) # 0. (line is disconnected) / 1. (line is connected) self.line_status = np.empty(shape=cls.n_line, dtype=dt_bool) # topological vector self.topo_vect = np.empty(shape=cls.dim_topo, dtype=dt_int) # generators information self.gen_p = np.empty(shape=cls.n_gen, dtype=dt_float) self.gen_q = np.empty(shape=cls.n_gen, dtype=dt_float) self.gen_v = np.empty(shape=cls.n_gen, dtype=dt_float) self.gen_margin_up = np.empty(shape=cls.n_gen, dtype=dt_float) self.gen_margin_down = np.empty(shape=cls.n_gen, dtype=dt_float) # loads information self.load_p = np.empty(shape=cls.n_load, dtype=dt_float) self.load_q = np.empty(shape=cls.n_load, dtype=dt_float) self.load_v = np.empty(shape=cls.n_load, dtype=dt_float) # lines origin information self.p_or = np.empty(shape=cls.n_line, dtype=dt_float) self.q_or = np.empty(shape=cls.n_line, dtype=dt_float) self.v_or = np.empty(shape=cls.n_line, dtype=dt_float) self.a_or = np.empty(shape=cls.n_line, dtype=dt_float) # lines extremity information self.p_ex = np.empty(shape=cls.n_line, dtype=dt_float) self.q_ex = np.empty(shape=cls.n_line, dtype=dt_float) self.v_ex = np.empty(shape=cls.n_line, dtype=dt_float) self.a_ex = np.empty(shape=cls.n_line, dtype=dt_float) # lines relative flows self.rho = np.empty(shape=cls.n_line, dtype=dt_float) # cool down and reconnection time after hard overflow, soft overflow or cascading failure self.time_before_cooldown_line = np.empty(shape=cls.n_line, dtype=dt_int) self.time_before_cooldown_sub = np.empty(shape=cls.n_sub, dtype=dt_int) self.time_next_maintenance = 1 * self.time_before_cooldown_line self.duration_next_maintenance = 1 * self.time_before_cooldown_line # redispatching self.target_dispatch = np.empty(shape=cls.n_gen, dtype=dt_float) self.actual_dispatch = np.empty(shape=cls.n_gen, dtype=dt_float) # storage unit self.storage_charge = np.empty(shape=cls.n_storage, dtype=dt_float) # in MWh self.storage_power_target = np.empty( shape=cls.n_storage, dtype=dt_float ) # in MW self.storage_power = np.empty(shape=cls.n_storage, dtype=dt_float) # in MW # attention budget self.is_alarm_illegal = np.ones(shape=1, dtype=dt_bool) self.time_since_last_alarm = np.empty(shape=1, dtype=dt_int) self.last_alarm = np.empty(shape=cls.dim_alarms, dtype=dt_int) self.attention_budget = np.empty(shape=1, dtype=dt_float) self.was_alarm_used_after_game_over = np.zeros(shape=1, dtype=dt_bool) # alert dim_alert = cls.dim_alerts self.active_alert = np.empty(shape=dim_alert, dtype=dt_bool) self.attack_under_alert = np.empty(shape=dim_alert, dtype=dt_int) self.time_since_last_alert = np.empty(shape=dim_alert, dtype=dt_int) self.alert_duration = np.empty(shape=dim_alert, dtype=dt_int) self.total_number_of_alert = np.empty(shape=1 if dim_alert else 0, dtype=dt_int) self.time_since_last_attack = np.empty(shape=dim_alert, dtype=dt_int) self.was_alert_used_after_attack = np.empty(shape=dim_alert, dtype=dt_int) # to save some computation time self._connectivity_matrix_ = None self._bus_connectivity_matrix_ = None self._dictionnarized = None self._vectorized = None # for shunt (these are not stored!) if cls.shunts_data_available: self._shunt_p = np.empty(shape=cls.n_shunt, dtype=dt_float) self._shunt_q = np.empty(shape=cls.n_shunt, dtype=dt_float) self._shunt_v = np.empty(shape=cls.n_shunt, dtype=dt_float) self._shunt_bus = np.empty(shape=cls.n_shunt, dtype=dt_int) self._thermal_limit = np.empty(shape=cls.n_line, dtype=dt_float) self.gen_p_before_curtail = np.empty(shape=cls.n_gen, dtype=dt_float) self.curtailment = np.empty(shape=cls.n_gen, dtype=dt_float) self.curtailment_limit = np.empty(shape=cls.n_gen, dtype=dt_float) self.curtailment_limit_effective = np.empty(shape=cls.n_gen, dtype=dt_float) # the "theta" (voltage angle, in degree) self.support_theta = False self.theta_or = np.empty(shape=cls.n_line, dtype=dt_float) self.theta_ex = np.empty(shape=cls.n_line, dtype=dt_float) self.load_theta = np.empty(shape=cls.n_load, dtype=dt_float) self.gen_theta = np.empty(shape=cls.n_gen, dtype=dt_float) self.storage_theta = np.empty(shape=cls.n_storage, dtype=dt_float) # counter self.current_step = dt_int(0) self.max_step = dt_int(np.iinfo(dt_int).max) self.delta_time = dt_float(5.0)
def _aux_copy(self, other : Self) -> None: attr_simple = [ "max_step", "current_step", "support_theta", "day_of_week", "minute_of_hour", "hour_of_day", "day", "month", "year", "delta_time", "_is_done", ] attr_vect = [ "storage_theta", "gen_theta", "load_theta", "theta_ex", "theta_or", "curtailment_limit", "curtailment", "gen_p_before_curtail", "_thermal_limit", "is_alarm_illegal", "time_since_last_alarm", "last_alarm", "attention_budget", "was_alarm_used_after_game_over", # alert (new in 1.9.1) "active_alert", "attack_under_alert", "time_since_last_alert", "alert_duration", "total_number_of_alert", "time_since_last_attack", "was_alert_used_after_attack", # other "storage_power", "storage_power_target", "storage_charge", "actual_dispatch", "target_dispatch", "duration_next_maintenance", "time_next_maintenance", "time_before_cooldown_sub", "time_before_cooldown_line", "rho", "a_ex", "v_ex", "q_ex", "p_ex", "a_or", "v_or", "q_or", "p_or", "load_p", "load_q", "load_v", "gen_p", "gen_q", "gen_v", "topo_vect", "line_status", "timestep_overflow", "gen_margin_up", "gen_margin_down", "curtailment_limit_effective", ] if type(self).shunts_data_available: attr_vect += ["_shunt_bus", "_shunt_v", "_shunt_q", "_shunt_p"] for attr_nm in attr_simple: setattr(other, attr_nm, copy.deepcopy(getattr(self, attr_nm))) for attr_nm in attr_vect: getattr(other, attr_nm)[:] = getattr(self, attr_nm)
[docs] def change_reward(self, reward_func: "grid2op.Reward.BaseReward"): """Allow to change the reward used when calling :func:`BaseObservation.simulate` without having to access the observation space. .. versionadded:: 1.10.2 .. seealso:: :func:`grid2op.ObservationSpace.change_reward` It has the same effet as :func:`grid2op.ObservationSpace.change_reward` Parameters ---------- reward_func : grid2op.Reward.BaseReward _description_ Raises ------ BaseObservationError _description_ """ if self._obs_env is not None: if self._obs_env.is_valid(): self._obs_env._reward_helper.change_reward(reward_func) else: raise BaseObservationError("Impossible to change the reward of the simulate " "function when you cannot simulate (because the " "backend could not be copied)")
def __copy__(self) -> Self: res = type(self)(obs_env=self._obs_env, action_helper=self.action_helper, kwargs_env=self._ptr_kwargs_env) # copy regular attributes self._aux_copy(other=res) # just copy res._connectivity_matrix_ = copy.copy(self._connectivity_matrix_) res._bus_connectivity_matrix_ = copy.copy(self._bus_connectivity_matrix_) res._dictionnarized = copy.copy(self._dictionnarized) res._vectorized = copy.copy(self._vectorized) # handles the forecasts here res._forecasted_grid_act = copy.copy(self._forecasted_grid_act) res._forecasted_inj = copy.copy(self._forecasted_inj) res._env_internal_params = copy.copy(self._env_internal_params ) return res def __deepcopy__(self, memodict={}) -> Self: res = type(self)(obs_env=self._obs_env, action_helper=self.action_helper, kwargs_env=self._ptr_kwargs_env) # copy regular attributes self._aux_copy(other=res) # just deepcopy res._connectivity_matrix_ = copy.deepcopy(self._connectivity_matrix_, memodict) res._bus_connectivity_matrix_ = copy.deepcopy( self._bus_connectivity_matrix_, memodict ) res._dictionnarized = copy.deepcopy(self._dictionnarized, memodict) res._vectorized = copy.deepcopy(self._vectorized, memodict) # handles the forecasts here res._forecasted_grid_act = copy.deepcopy(self._forecasted_grid_act, memodict) res._forecasted_inj = copy.deepcopy(self._forecasted_inj, memodict) res._env_internal_params = copy.deepcopy(self._env_internal_params, memodict) return res
[docs] def state_of( self, _sentinel=None, load_id=None, gen_id=None, line_id=None, storage_id=None, substation_id=None, ) -> Dict[Literal["p", "q", "v", "theta", "bus", "sub_id", "actual_dispatch", "target_dispatch", "maintenance", "cooldown_time", "storage_power", "storage_charge", "storage_power_target", "storage_theta", "topo_vect", "nb_bus", "origin", "extremity"], Union[int, float, Dict[Literal["p", "q", "v", "a", "sub_id", "bus", "theta"], Union[int, float]]] ]: """ Return the state of this action on a give unique load, generator unit, powerline of substation. Only one of load, gen, line or substation should be filled. The querry of these objects can only be done by id here (ie by giving the integer of the object in the backed). The :class:`ActionSpace` has some utilities to access them by name too. Parameters ---------- _sentinel: ``None`` Used to prevent positional parameters. Internal, do not use. load_id: ``int`` ID of the load we want to inspect gen_id: ``int`` ID of the generator we want to inspect line_id: ``int`` ID of the powerline we want to inspect line_id: ``int`` ID of the powerline we want to inspect storage_id: ``int`` ID of the storage unit we want to inspect substation_id: ``int`` ID of the substation unit we want to inspect Returns ------- res: :class:`dict` A dictionary with keys and value depending on which object needs to be inspected: - if a load is inspected, then the keys are: - "p" the active value consumed by the load - "q" the reactive value consumed by the load - "v" the voltage magnitude of the bus to which the load is connected - "theta" (optional) the voltage angle (in degree) of the bus to which the load is connected - "bus" on which bus the load is connected in the substation - "sub_id" the id of the substation to which the load is connected - if a generator is inspected, then the keys are: - "p" the active value produced by the generator - "q" the reactive value consumed by the generator - "v" the voltage magnitude of the bus to which the generator is connected - "theta" (optional) the voltage angle (in degree) of the bus to which the gen. is connected - "bus" on which bus the generator is connected in the substation - "sub_id" the id of the substation to which the generator is connected - "actual_dispatch" the actual dispatch implemented for this generator - "target_dispatch" the target dispatch (cumulation of all previously asked dispatch by the agent) for this generator - if a powerline is inspected then the keys are "origin" and "extremity" each being dictionary with keys: - "p" the active flow on line side (extremity or origin) - "q" the reactive flow on line side (extremity or origin) - "v" the voltage magnitude of the bus to which the line side (extremity or origin) is connected - "theta" (optional) the voltage angle (in degree) of the bus to which line side (extremity or origin) is connected - "bus" on which bus the line side (extremity or origin) is connected in the substation - "sub_id" the id of the substation to which the line side is connected - "a" the current flow on the line side (extremity or origin) In the case of a powerline, additional information are: - "maintenance": information about the maintenance operation (time of the next maintenance and duration of this next maintenance. - "cooldown_time": for how many timestep i am not supposed to act on the powerline due to cooldown (see :attr:`grid2op.Parameters.Parameters.NB_TIMESTEP_COOLDOWN_LINE` for more information) - if a storage unit is inspected, information are: - "storage_power": the power the unit actually produced / absorbed - "storage_charge": the state of the charge of the storage unit - "storage_power_target": the power production / absorbtion targer - "storage_theta": (optional) the voltage angle of the bus at which the storage unit is connected - "bus": the bus (1 or 2) to which the storage unit is connected - "sub_id" : the id of the substation to which the sotrage unit is connected - if a substation is inspected, it returns the topology to this substation in a dictionary with keys: - "topo_vect": the representation of which object is connected where - "nb_bus": number of active buses in this substations - "cooldown_time": for how many timestep i am not supposed to act on the substation due to cooldown (see :attr:`grid2op.Parameters.Parameters.NB_TIMESTEP_COOLDOWN_SUB` for more information) Notes ----- This function can only be used to retrieve the state of the element of the grid, and not the alarm sent or not, to the operator. Raises ------ Grid2OpException If _sentinel is modified, or if None of the arguments are set or alternatively if 2 or more of the parameters are being set. """ if _sentinel is not None: raise Grid2OpException( "action.effect_on should only be called with named argument." ) if ( load_id is None and gen_id is None and line_id is None and substation_id is None and storage_id is None ): raise Grid2OpException( "You ask the state of an object in a observation without specifying the object id. " 'Please provide "load_id", "gen_id", "line_id", "storage_id" or ' '"substation_id"' ) cls = type(self) if load_id is not None: if ( gen_id is not None or line_id is not None or substation_id is not None or storage_id is not None ): raise Grid2OpException(ERROR_ONLY_SINGLE_EL) if load_id >= len(self.load_p): raise Grid2OpException( 'There are no load of id "load_id={}" in this grid.'.format(load_id) ) if load_id < 0: raise Grid2OpException("`load_id` should be a positive integer") res = { "p": self.load_p[load_id], "q": self.load_q[load_id], "v": self.load_v[load_id], "bus": self.topo_vect[self.load_pos_topo_vect[load_id]], "sub_id": cls.load_to_subid[load_id], } if self.support_theta: res["theta"] = self.load_theta[load_id] elif gen_id is not None: if ( line_id is not None or substation_id is not None or storage_id is not None ): raise Grid2OpException(ERROR_ONLY_SINGLE_EL) if gen_id >= len(self.gen_p): raise Grid2OpException( 'There are no generator of id "gen_id={}" in this grid.'.format( gen_id ) ) if gen_id < 0: raise Grid2OpException("`gen_id` should be a positive integer") res = { "p": self.gen_p[gen_id], "q": self.gen_q[gen_id], "v": self.gen_v[gen_id], "bus": self.topo_vect[self.gen_pos_topo_vect[gen_id]], "sub_id": cls.gen_to_subid[gen_id], "target_dispatch": self.target_dispatch[gen_id], "actual_dispatch": self.target_dispatch[gen_id], "curtailment": self.curtailment[gen_id], "curtailment_limit": self.curtailment_limit[gen_id], "curtailment_limit_effective": self.curtailment_limit_effective[gen_id], "p_before_curtail": self.gen_p_before_curtail[gen_id], "margin_up": self.gen_margin_up[gen_id], "margin_down": self.gen_margin_down[gen_id], } if self.support_theta: res["theta"] = self.gen_theta[gen_id] elif line_id is not None: if substation_id is not None or storage_id is not None: raise Grid2OpException(ERROR_ONLY_SINGLE_EL) if line_id >= len(self.p_or): raise Grid2OpException( 'There are no powerline of id "line_id={}" in this grid.'.format( line_id ) ) if line_id < 0: raise Grid2OpException("`line_id` should be a positive integer") res = {} # origin information res["origin"] = { "p": self.p_or[line_id], "q": self.q_or[line_id], "v": self.v_or[line_id], "a": self.a_or[line_id], "bus": self.topo_vect[cls.line_or_pos_topo_vect[line_id]], "sub_id": cls.line_or_to_subid[line_id], } if self.support_theta: res["origin"]["theta"] = self.theta_or[line_id] # extremity information res["extremity"] = { "p": self.p_ex[line_id], "q": self.q_ex[line_id], "v": self.v_ex[line_id], "a": self.a_ex[line_id], "bus": self.topo_vect[cls.line_ex_pos_topo_vect[line_id]], "sub_id": cls.line_ex_to_subid[line_id], } if self.support_theta: res["origin"]["theta"] = self.theta_ex[line_id] # maintenance information res["maintenance"] = { "next": self.time_next_maintenance[line_id], "duration_next": self.duration_next_maintenance[line_id], } # cooldown res["cooldown_time"] = self.time_before_cooldown_line[line_id] elif storage_id is not None: if substation_id is not None: raise Grid2OpException(ERROR_ONLY_SINGLE_EL) if storage_id >= cls.n_storage: raise Grid2OpException( 'There are no storage unit with id "storage_id={}" in this grid.'.format( storage_id ) ) if storage_id < 0: raise Grid2OpException("`storage_id` should be a positive integer") res = {} res["p"] = self.storage_power[storage_id] res["storage_power"] = self.storage_power[storage_id] res["storage_charge"] = self.storage_charge[storage_id] res["storage_power_target"] = self.storage_power_target[storage_id] res["bus"] = self.topo_vect[cls.storage_pos_topo_vect[storage_id]] res["sub_id"] = cls.storage_to_subid[storage_id] if self.support_theta: res["theta"] = self.storage_theta[storage_id] else: if substation_id >= len(cls.sub_info): raise Grid2OpException( 'There are no substation of id "substation_id={}" in this grid.'.format( substation_id ) ) beg_ = int(cls.sub_info[:substation_id].sum()) end_ = int(beg_ + cls.sub_info[substation_id]) topo_sub = self.topo_vect[beg_:end_] if (topo_sub > 0).any(): nb_bus = ( np.max(topo_sub[topo_sub > 0]) - np.min(topo_sub[topo_sub > 0]) + 1 ) else: nb_bus = 0 res = { "topo_vect": topo_sub, "nb_bus": nb_bus, "cooldown_time": self.time_before_cooldown_sub[substation_id], } return res
[docs] @classmethod def process_shunt_satic_data(cls) -> None: if not cls.shunts_data_available: # this is really important, otherwise things from grid2op base types will be affected cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) cls.attr_list_set = copy.deepcopy(cls.attr_list_set) # remove the shunts from the list to vector for el in ["_shunt_p", "_shunt_q", "_shunt_v", "_shunt_bus"]: if el in cls.attr_list_vect: try: cls.attr_list_vect.remove(el) except ValueError: pass cls.attr_list_set = set(cls.attr_list_vect) return super().process_shunt_satic_data()
@classmethod def _aux_process_grid2op_compat_old(cls): # this is really important, otherwise things from grid2op base types will be affected cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) cls.attr_list_set = copy.deepcopy(cls.attr_list_set) # deactivate storage cls.set_no_storage() for el in ["storage_charge", "storage_power_target", "storage_power"]: if el in cls.attr_list_vect: try: cls.attr_list_vect.remove(el) except ValueError: pass # remove the curtailment for el in ["gen_p_before_curtail", "curtailment", "curtailment_limit"]: if el in cls.attr_list_vect: try: cls.attr_list_vect.remove(el) except ValueError: pass @classmethod def _aux_process_grid2op_compat_160(cls): cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) cls.dim_alarms = 0 for el in [ "is_alarm_illegal", "time_since_last_alarm", "last_alarm", "attention_budget", "was_alarm_used_after_game_over", ]: try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass for el in ["_shunt_p", "_shunt_q", "_shunt_v", "_shunt_bus"]: # added in grid2op 1.6.0 mainly for the EpisodeReboot try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass @classmethod def _aux_process_grid2op_compat_164(cls): cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) for el in ["max_step", "current_step"]: try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass @classmethod def _aux_process_grid2op_compat_165(cls): cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) for el in ["delta_time"]: try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass @classmethod def _aux_process_grid2op_compat_166(cls): cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) for el in [ "gen_margin_up", "gen_margin_down", "curtailment_limit_effective", ]: try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass @classmethod def _aux_process_grid2op_compat_191(cls): cls.attr_list_vect = copy.deepcopy(cls.attr_list_vect) for el in [ "active_alert", "attack_under_alert", "time_since_last_alert", "alert_duration", "total_number_of_alert", "time_since_last_attack", "was_alert_used_after_attack" ]: try: cls.attr_list_vect.remove(el) except ValueError as exc_: # this attribute was not there in the first place pass
[docs] @classmethod def process_grid2op_compat(cls) -> None: super().process_grid2op_compat() glop_ver = cls._get_grid2op_version_as_version_obj() if cls.glop_version == cls.BEFORE_COMPAT_VERSION: # oldest version: no storage and no curtailment available cls._aux_process_grid2op_compat_old() if glop_ver < version.parse("1.6.0"): # this feature did not exist before and was introduced in grid2op 1.6.0 cls._aux_process_grid2op_compat_160() if glop_ver < version.parse("1.6.4"): # "current_step", "max_step" were added in grid2Op 1.6.4 cls._aux_process_grid2op_compat_164() if glop_ver < version.parse("1.6.5"): # "current_step", "max_step" were added in grid2Op 1.6.5 cls._aux_process_grid2op_compat_165() if glop_ver < version.parse("1.6.6"): # "gen_margin_up", "gen_margin_down" were added in grid2Op 1.6.6 cls._aux_process_grid2op_compat_166() if glop_ver < version.parse("1.9.1"): # alert attributes have been added in 1.9.1 cls._aux_process_grid2op_compat_191() cls.attr_list_set = copy.deepcopy(cls.attr_list_set) cls.attr_list_set = set(cls.attr_list_vect)
def shape(self) -> np.ndarray: return type(self).shapes() def dtype(self) -> np.ndarray: return type(self).dtypes()
[docs] def reset(self) -> None: """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Resetting a single observation is unlikely to do what you want to do. Reset the :class:`BaseObservation` to a blank state, where everything is set to either ``None`` or to its default value. """ self._is_done = True # 0. (line is disconnected) / 1. (line is connected) self.line_status[:] = True # topological vector self.topo_vect[:] = 0 # generators information self.gen_p[:] = np.NaN self.gen_q[:] = np.NaN self.gen_v[:] = np.NaN # loads information self.load_p[:] = np.NaN self.load_q[:] = np.NaN self.load_v[:] = np.NaN # lines origin information self.p_or[:] = np.NaN self.q_or[:] = np.NaN self.v_or[:] = np.NaN self.a_or[:] = np.NaN # lines extremity information self.p_ex[:] = np.NaN self.q_ex[:] = np.NaN self.v_ex[:] = np.NaN self.a_ex[:] = np.NaN # lines relative flows self.rho[:] = np.NaN # cool down and reconnection time after hard overflow, soft overflow or cascading failure self.time_before_cooldown_line[:] = -1 self.time_before_cooldown_sub[:] = -1 self.time_next_maintenance[:] = -1 self.duration_next_maintenance[:] = -1 self.timestep_overflow[:] = 0 # calendar data self.year = dt_int(1970) self.month = dt_int(0) self.day = dt_int(0) self.hour_of_day = dt_int(0) self.minute_of_hour = dt_int(0) self.day_of_week = dt_int(0) # forecasts self._forecasted_inj = [] self._forecasted_grid_act = {} self._env_internal_params = {} # redispatching self.target_dispatch[:] = np.NaN self.actual_dispatch[:] = np.NaN # storage units self.storage_charge[:] = np.NaN self.storage_power_target[:] = np.NaN self.storage_power[:] = np.NaN # to save up computation time self._dictionnarized = None self._connectivity_matrix_ = None self._bus_connectivity_matrix_ = None if type(self).shunts_data_available: self._shunt_p[:] = np.NaN self._shunt_q[:] = np.NaN self._shunt_v[:] = np.NaN self._shunt_bus[:] = -1 self.support_theta = False self.theta_or[:] = np.NaN self.theta_ex[:] = np.NaN self.load_theta[:] = np.NaN self.gen_theta[:] = np.NaN self.storage_theta[:] = np.NaN # alarm feature self.is_alarm_illegal[:] = False self.time_since_last_alarm[:] = -1 self.last_alarm[:] = False self.attention_budget[:] = 0 self.was_alarm_used_after_game_over[:] = False # alert line feature self.active_alert[:] = False self.attack_under_alert[:] = 0 self.time_since_last_alert[:] = 0 self.alert_duration[:] = 0 self.total_number_of_alert[:] = 0 self.time_since_last_attack[:] = -1 self.was_alert_used_after_attack[:] = 0 self.current_step = dt_int(0) self.max_step = dt_int(np.iinfo(dt_int).max) self.delta_time = dt_float(5.0)
[docs] def set_game_over(self, env: Optional["grid2op.Environment.Environment"]=None) -> None: """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ This is used internally to reset an observation in a fixed state, possibly after a game over. Set the observation to the "game over" state: - all powerlines are disconnected - all loads are 0. - all prods are 0. - etc. Notes ----- As some attributes are initialized with `np.empty` it is recommended to reset here all attributes to avoid non deterministic behaviour. """ self._is_done = True self.gen_p[:] = 0.0 self.gen_q[:] = 0.0 self.gen_v[:] = 0.0 self.gen_margin_up[:] = 0.0 self.gen_margin_down[:] = 0.0 # loads information self.load_p[:] = 0.0 self.load_q[:] = 0.0 self.load_v[:] = 0.0 # lines origin information self.p_or[:] = 0.0 self.q_or[:] = 0.0 self.v_or[:] = 0.0 self.a_or[:] = 0.0 # lines extremity information self.p_ex[:] = 0.0 self.q_ex[:] = 0.0 self.v_ex[:] = 0.0 self.a_ex[:] = 0.0 # lines relative flows self.rho[:] = 0.0 # line status self.line_status[:] = False # topological vector self.topo_vect[:] = -1 # forecasts self._forecasted_inj = [] self._forecasted_grid_act = {} self._env_internal_params = {} # redispatching self.target_dispatch[:] = 0.0 self.actual_dispatch[:] = 0.0 # storage self.storage_charge[:] = 0.0 self.storage_power_target[:] = 0.0 self.storage_power[:] = 0.0 # curtailment self.curtailment[:] = 0.0 self.curtailment_limit[:] = 1.0 self.curtailment_limit_effective[:] = 1.0 self.gen_p_before_curtail[:] = 0.0 # cooldown self.time_before_cooldown_line[:] = 0 self.time_before_cooldown_sub[:] = 0 self.time_next_maintenance[:] = -1 self.duration_next_maintenance[:] = 0 # overflow self.timestep_overflow[:] = 0 if type(self).shunts_data_available: self._shunt_p[:] = 0.0 self._shunt_q[:] = 0.0 self._shunt_v[:] = 0.0 self._shunt_bus[:] = -1 if env is None: # set an old date (as i don't know anything about the env) self.year = 1970 self.month = 1 self.day = 1 self.hour_of_day = 0 self.minute_of_hour = 0 self.day_of_week = 1 else: # retrieve the date from the environment self.year = dt_int(env.time_stamp.year) self.month = dt_int(env.time_stamp.month) self.day = dt_int(env.time_stamp.day) self.hour_of_day = dt_int(env.time_stamp.hour) self.minute_of_hour = dt_int(env.time_stamp.minute) self.day_of_week = dt_int(env.time_stamp.weekday()) if env is not None: self._thermal_limit[:] = env.get_thermal_limit() else: self._thermal_limit[:] = 0. # by convention, I say it's 0 if the grid is in total blackout self.theta_or[:] = 0.0 self.theta_ex[:] = 0.0 self.load_theta[:] = 0.0 self.gen_theta[:] = 0.0 self.storage_theta[:] = 0.0 # counter if env is not None: self.current_step = dt_int(env.nb_time_step) self.max_step = dt_int(env.max_episode_duration()) # stuff related to alarm self.is_alarm_illegal[:] = False self.time_since_last_alarm[:] = -1 self.last_alarm[:] = False self.attention_budget[:] = 0 if env is not None: self.was_alarm_used_after_game_over[:] = env._is_alarm_used_in_reward else: self.was_alarm_used_after_game_over[:] = False # related to alert self.active_alert[:] = False self.time_since_last_alert[:] = 0 self.alert_duration[:] = 0 self.total_number_of_alert[:] = 0 self.time_since_last_attack[:] = -1
# was_alert_used_after_attack not updated here in this case # attack_under_alert not updated here in this case def __compare_stats(self, other: Self, name: str) -> bool: attr_me = getattr(self, name) attr_other = getattr(other, name) if attr_me is None and attr_other is not None: return False if attr_me is not None and attr_other is None: return False if attr_me is not None: if attr_me.shape != attr_other.shape: return False if attr_me.dtype != attr_other.dtype: return False if np.issubdtype(attr_me.dtype, np.dtype(dt_float).type): # first special case: there can be Nan there me_finite = np.isfinite(attr_me) oth_finite = np.isfinite(attr_other) if (me_finite != oth_finite).any(): return False # special case of floating points, otherwise vector are never equal if not np.all( np.abs(attr_me[me_finite] - attr_other[oth_finite]) <= self._tol_equal ): return False else: if not np.all(attr_me == attr_other): return False return True
[docs] def __eq__(self, other : Self) -> bool: """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Test the equality of two observations. 2 actions are said to be identical if the have the same impact on the powergrid. This is unlrelated to their respective class. For example, if an BaseAction is of class :class:`BaseAction` and doesn't act on the _injection, it can be equal to a an BaseAction of derived class :class:`TopologyAction` (if the topological modification are the same of course). This implies that the attributes :attr:`BaseAction.authorized_keys` is not checked in this method. Note that if 2 actions doesn't act on the same powergrid, or on the same backend (eg number of loads, or generators is not the same in *self* and *other*, or they are not in the same order) then action will be declared as different. **Known issue** if two backend are different, but the description of the _grid are identical (ie all n_gen, n_load, n_line, sub_info, dim_topo, all vectors \\*_to_subid, and \\*_pos_topo_vect are identical) then this method will not detect the backend are different, and the action could be declared as identical. For now, this is only a theoretical behaviour: if everything is the same, then probably, up to the naming convention, then the powergrid are identical too. Parameters ---------- other: :class:`BaseObservation` An instance of class BaseAction to which "self" will be compared. Returns ------- ``True`` if the action are equal, ``False`` otherwise. """ if self.year != other.year: return False if self.month != other.month: return False if self.day != other.day: return False if self.day_of_week != other.day_of_week: return False if self.hour_of_day != other.hour_of_day: return False if self.minute_of_hour != other.minute_of_hour: return False # check that the underlying grid is the same in both instances same_grid = type(self).same_grid_class(type(other)) if not same_grid: return False for stat_nm in self._attr_eq: if not self.__compare_stats(other, stat_nm): # one of the above stat is not equal in this and in other return False return True
def _aux_sub_get_attr_diff(self, me_, oth_): diff_ = None if me_ is None and oth_ is None: diff_ = None elif me_ is not None and oth_ is None: diff_ = me_ elif me_ is None and oth_ is not None: if oth_.dtype == dt_bool: diff_ = np.full(oth_.shape, fill_value=False, dtype=dt_bool) else: diff_ = -oth_ else: # both are not None if oth_.dtype == dt_bool: diff_ = ~np.logical_xor(me_, oth_) else: diff_ = me_ - oth_ return diff_
[docs] def __sub__(self, other : Self) -> Self: """ Computes the difference between two observations, and return an observation corresponding to this difference. This can be used to easily plot the difference between two observations at different step for example. Examples ---------- .. code-block:: python import grid2op env = grid2op.make("l2rpn_case14_sandbox") obs_0 = env.reset() action = env.action_space() obs_1, reward, done, info = env.step(action) diff_obs = obs_1 - obs_0 diff_obs.gen_p # the variation in generator between these steps """ same_grid = type(self).same_grid_class(type(other)) if not same_grid: raise Grid2OpException( "Cannot compare to observation not coming from the same powergrid." ) tmp_obs_env = self._obs_env self._obs_env = None # keep aside the backend _ptr_kwargs_env = self._ptr_kwargs_env self._ptr_kwargs_env = None # keep aside the pointer to the env kwargs res = copy.deepcopy(self) self._obs_env = tmp_obs_env self._ptr_kwargs_env = _ptr_kwargs_env for stat_nm in self._attr_eq: me_ = getattr(self, stat_nm) oth_ = getattr(other, stat_nm) diff_ = self._aux_sub_get_attr_diff(me_, oth_) res.__setattr__(stat_nm, diff_) return res
[docs] def where_different(self, other : Self) -> Tuple[Self, List]: """ Returns the difference between two observation. Parameters ---------- other: Other action to compare Returns ------- diff_: :class:`BaseObservation` The observation showing the difference between `self` and `other` attr_nm: ``list`` List of string representing the names of the different attributes. It's [] if the two observations are identical. """ diff_ = self - other res = [] for attr_nm in self._attr_eq: array_ = getattr(diff_, attr_nm) if array_.dtype == dt_bool: if (~array_).any(): res.append(attr_nm) else: if (array_.shape[0] > 0) and np.max(np.abs(array_)): res.append(attr_nm) return diff_, res
[docs] @abstractmethod def update(self, env: "grid2op.Environment.Environment", with_forecast: bool=True) -> None: """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ This is carried out automatically by the environment in `env.step` Update the actual instance of BaseObservation with the new received value from the environment. An observation is a description of the powergrid perceived by an agent. The agent takes his decision based on the current observation and the past rewards. This method `update` receive complete detailed information about the powergrid, but that does not mean an agent sees everything. For example, it is possible to derive this class to implement some noise in the generator or load, or flows to mimic sensor inaccuracy. It is also possible to give fake information about the topology, the line status etc. In the Grid2Op framework it's also through the observation that the agent has access to some forecast (the way forecast are handled depends are implemented in this class). For example, forecast data (retrieved thanks to `chronics_handler`) are processed, but can be processed differently. One can apply load / production forecast to each _grid state, or to make forecast for one "reference" _grid state valid a whole day and update this one only etc. All these different mechanisms can be implemented in Grid2Op framework by overloading the `update` observation method. This class is really what a dispatcher observes from it environment. It can also include some temperatures, nebulosity, wind etc. can also be included in this class. Notes ----- We strongly recommend to call :attr:`BaseObservation.reset` when implementing this function. """ pass
def _aux_build_conn_mat(self, as_csr_matrix): # self._connectivity_matrix_ = np.zeros(shape=(self.dim_topo, self.dim_topo), dtype=dt_float) # fill it by block for the objects beg_ = 0 end_ = 0 row_ind = [] col_ind = [] cls = type(self) for sub_id, nb_obj in enumerate(cls.sub_info): # it must be a vanilla python integer, otherwise it's not handled by some backend # especially if written in c++ nb_obj = int(nb_obj) end_ += nb_obj # tmp = np.zeros(shape=(nb_obj, nb_obj), dtype=dt_float) for obj1 in range(nb_obj): my_bus = self.topo_vect[beg_ + obj1] if my_bus == -1: # object is disconnected, nothing is done continue # connect an object to itself row_ind.append(beg_ + obj1) col_ind.append(beg_ + obj1) # connect the other objects to it for obj2 in range(obj1 + 1, nb_obj): my_bus2 = self.topo_vect[beg_ + obj2] if my_bus2 == -1: # object is disconnected, nothing is done continue if my_bus == my_bus2: # objects are on the same bus # tmp[obj1, obj2] = 1 # tmp[obj2, obj1] = 1 row_ind.append(beg_ + obj2) col_ind.append(beg_ + obj1) row_ind.append(beg_ + obj1) col_ind.append(beg_ + obj2) beg_ += nb_obj # both ends of a line are connected together (if line is connected) for q_id in range(cls.n_line): if self.line_status[q_id]: # if powerline is connected connect both its side row_ind.append(cls.line_or_pos_topo_vect[q_id]) col_ind.append(cls.line_ex_pos_topo_vect[q_id]) row_ind.append(cls.line_ex_pos_topo_vect[q_id]) col_ind.append(cls.line_or_pos_topo_vect[q_id]) row_ind = np.array(row_ind).astype(dt_int) col_ind = np.array(col_ind).astype(dt_int) if not as_csr_matrix: self._connectivity_matrix_ = np.zeros( shape=(cls.dim_topo, cls.dim_topo), dtype=dt_float ) self._connectivity_matrix_[row_ind.T, col_ind] = 1.0 else: data = np.ones(row_ind.shape[0], dtype=dt_float) self._connectivity_matrix_ = csr_matrix( (data, (row_ind, col_ind)), shape=(cls.dim_topo, cls.dim_topo), dtype=dt_float, )
[docs] def connectivity_matrix(self, as_csr_matrix: bool=False) -> Union[np.ndarray, csr_matrix]: """ Computes and return the "connectivity matrix" `con_mat`. Let "dim_topo := 2 * n_line + n_prod + n_conso + n_storage" (the total number of elements on the grid) It is a matrix of size dim_topo, dim_topo, with values 0 or 1. For two objects (lines extremity, generator unit, load) i,j : - if i and j are connected on the same substation: - if `conn_mat[i,j] = 0` it means the objects id'ed i and j are not connected to the same bus. - if `conn_mat[i,j] = 1` it means the objects id'ed i and j are connected to the same bus - if i and j are not connected on the same substation then`conn_mat[i,j] = 0` except if i and j are the two extremities of the same power line, in this case `conn_mat[i,j] = 1` (if the powerline is in service or 0 otherwise). By definition, the diagonal is made of 0. Returns ------- res: ``numpy.ndarray``, shape:dim_topo,dim_topo, dtype:float The connectivity matrix, as defined above Notes ------- Matrix can be either a sparse matrix or a dense matrix depending on the argument `as_csr_matrix` An object, is not disconnected, is always connected to itself. Examples --------- If you want to know if powerline 0 is connected at its "extremity" side with the load of id 0 you can do .. code-block:: python import grid2op env = grid2op.make("l2rpn_case14_sandbox") obs = env.reset() # retrieve the id of extremity of powerline 1: id_lineex_0 = obs.line_ex_pos_topo_vect[0] id_load_1 = obs.load_pos_topo_vect[0] # get the connectivity matrix connectivity_matrix = obs.connectivity_matrix() # know if the objects are connected or not are_connected = connectivity_matrix[id_lineex_0, id_load_1] # as `are_connected` is 1.0 then these objects are indeed connected And now, supposes we do an action that changes the topology of the substation to which these two objects are connected, then we get (same example continues) .. code-block:: python topo_action = env.action_space({"set_bus": {"substations_id": [(1, [1,1,1,2,2,2])]}}) print(topo_action) # This action will: # - NOT change anything to the injections # - NOT perform any redispatching action # - NOT force any line status # - NOT switch any line status # - NOT switch anything in the topology # - Set the bus of the following element: # - assign bus 1 to line (extremity) 0 [on substation 1] # - assign bus 1 to line (origin) 2 [on substation 1] # - assign bus 1 to line (origin) 3 [on substation 1] # - assign bus 2 to line (origin) 4 [on substation 1] # - assign bus 2 to generator 0 [on substation 1] # - assign bus 2 to load 0 [on substation 1] obs, reward, done, info = env.step(topo_action) # and now retrieve the matrix connectivity_matrix = obs.connectivity_matrix() # know if the objects are connected or not are_connected = connectivity_matrix[id_lineex_0, id_load_1] # as `are_connected` is 0.0 then these objects are not connected anymore # this is visible when you "print" the action (see above) in the two following lines: # - assign bus 1 to line (extremity) 0 [on substation 1] # - assign bus 2 to load 0 [on substation 1] # -> one of them is on bus 1 [line (extremity) 0] and the other on bus 2 [load 0] """ need_build_mat = (self._connectivity_matrix_ is None or isinstance(self._connectivity_matrix_, csr_matrix) and not as_csr_matrix or ( (not isinstance(self._connectivity_matrix_, csr_matrix)) and as_csr_matrix ) ) if need_build_mat : self._aux_build_conn_mat(as_csr_matrix) return self._connectivity_matrix_
def _aux_fun_get_bus(self): """see in bus_connectivity matrix""" cls = type(self) bus_or = self.topo_vect[cls.line_or_pos_topo_vect] bus_ex = self.topo_vect[cls.line_ex_pos_topo_vect] connected = (bus_or > 0) & (bus_ex > 0) bus_or = bus_or[connected] bus_ex = bus_ex[connected] # bus_or = self.line_or_to_subid[connected] + (bus_or - 1) * self.n_sub # bus_ex = self.line_ex_to_subid[connected] + (bus_ex - 1) * self.n_sub bus_or = cls.local_bus_to_global(bus_or, cls.line_or_to_subid[connected]) bus_ex = cls.local_bus_to_global(bus_ex, cls.line_ex_to_subid[connected]) unique_bus = np.unique(np.concatenate((bus_or, bus_ex))) unique_bus = np.sort(unique_bus) nb_bus = unique_bus.shape[0] return nb_bus, unique_bus, bus_or, bus_ex
[docs] def bus_connectivity_matrix(self, as_csr_matrix: bool=False, return_lines_index: bool=False) -> Tuple[Union[np.ndarray, csr_matrix], Optional[Tuple[np.ndarray, np.ndarray]]]: """ If we denote by `nb_bus` the total number bus of the powergrid (you can think of a "bus" being a "node" if you represent a powergrid as a graph [mathematical object, not a plot] with the lines being the "edges"]. The `bus_connectivity_matrix` will have a size nb_bus, nb_bus and will be made of 0 and 1. If `bus_connectivity_matrix[i,j] = 1` then at least a power line connects bus i and bus j. Otherwise, nothing connects it. .. warning:: The matrix returned by this function has not a fixed size. Its number of nodes and edges can change depending on the state of the grid. See :ref:`get-the-graph-gridgraph` for more information. Also, note that when "done=True" this matrix has size (1, 1) and contains only 0. Parameters ---------- as_csr_matrix: ``bool`` Whether to return the bus connectivity matrix as a sparse matrix (csr format) or as a dense matrix. By default it's ``False`` meaning a dense matrix is returned. return_lines_index: ``bool`` Whether to also return the bus index associated to both side of each powerline. ``False`` by default, meaning the indexes are not returned. Returns ------- res: ``numpy.ndarray``, shape: (nb_bus, nb_bus) dtype:float The bus connectivity matrix defined above. optional: - `lor_bus` : for each powerline, it gives the id (row / column of the matrix) of the bus of the matrix to which its origin side is connected - `lex_bus` : for each powerline, it gives the id (row / column of the matrix) of the bus of the matrix to which its extremity side is connected Notes ------ By convention we say that a bus is connected to itself. So the diagonal of this matrix is 1. Examples -------- Here is how you can use this function: .. code-block:: python bus_bus_graph, (line_or_bus, line_ex_bus) = obs.bus_connectivity_matrix(return_lines_index=True) # bus_bus_graph is the matrix described above. # line_or_bus[0] give the id of the bus to which the origin side of powerline 0 is connected # line_ex_bus[0] give the id of the bus to which the extremity side of powerline 0 is connected # (NB: if the powerline is disconnected, both are -1) # this means that if line 0 is connected: bus_bus_graph[line_or_bus[0], line_ex_bus[0]] = 1 # and bus_bus_graph[line_ex_bus[0], line_or_bus[0]] = 1 # (of course you can replace 0 with any integer `0 <= l_id < obs.n_line` """ if self._is_done: self._bus_connectivity_matrix_ = None nb_bus = 1 if as_csr_matrix: tmp_ = csr_matrix((1,1), dtype=dt_float) else: tmp_ = np.zeros(shape=(nb_bus, nb_bus), dtype=dt_float) if not return_lines_index: res = tmp_ else: cls = type(self) lor_bus = np.zeros(cls.n_line, dtype=dt_int) lex_bus = np.zeros(cls.n_line, dtype=dt_int) res = (tmp_, lor_bus, lex_bus) return res if ( self._bus_connectivity_matrix_ is None or ( isinstance(self._bus_connectivity_matrix_, csr_matrix) and not as_csr_matrix ) or ( (not isinstance(self._bus_connectivity_matrix_, csr_matrix)) and as_csr_matrix ) or return_lines_index ): nb_bus, unique_bus, bus_or, bus_ex = self._aux_fun_get_bus() # convert the bus id (from 0 to 2 * n_sub) to the row / column in the matrix (number between 0 and nb_bus) all_indx = np.arange(nb_bus) tmplate = np.arange(np.max(unique_bus) + 1) tmplate[unique_bus] = all_indx bus_or_in_mat = tmplate[bus_or] bus_ex_in_mat = tmplate[bus_ex] if not as_csr_matrix: self._bus_connectivity_matrix_ = np.zeros( shape=(nb_bus, nb_bus), dtype=dt_float ) self._bus_connectivity_matrix_[bus_or_in_mat, bus_ex_in_mat] = 1.0 self._bus_connectivity_matrix_[bus_ex_in_mat, bus_or_in_mat] = 1.0 self._bus_connectivity_matrix_[all_indx, all_indx] = 1.0 else: data = np.ones( nb_bus + bus_or_in_mat.shape[0] + bus_ex_in_mat.shape[0], dtype=dt_float, ) row_ind = np.concatenate((all_indx, bus_or_in_mat, bus_ex_in_mat)) col_ind = np.concatenate((all_indx, bus_ex_in_mat, bus_or_in_mat)) self._bus_connectivity_matrix_ = csr_matrix( (data, (row_ind, col_ind)), shape=(nb_bus, nb_bus), dtype=dt_float ) if not return_lines_index: res = self._bus_connectivity_matrix_ else: # bus or and bus ex are defined above is return_line_index is True lor_bus, _ = self._get_bus_id( self.line_or_pos_topo_vect, self.line_or_to_subid ) lex_bus, _ = self._get_bus_id( self.line_ex_pos_topo_vect, self.line_ex_to_subid ) res = (self._bus_connectivity_matrix_, (tmplate[lor_bus], tmplate[lex_bus])) return res
def _get_bus_id(self, id_topo_vect, sub_id): """ get the bus id with the internal convention that: - if object on bus 1, its bus is `sub_id` - if object on bus 2, its bus is `sub_id` + n_sub - if object on bus 3, its bus is `sub_id` + 2 * n_sub - etc. """ bus_id = 1 * self.topo_vect[id_topo_vect] connected = bus_id > 0 # bus_id[connected] = sub_id[connected] + (bus_id[connected] - 1) * self.n_sub bus_id[connected] = type(self).local_bus_to_global(bus_id[connected], sub_id[connected]) return bus_id, connected
[docs] def flow_bus_matrix(self, active_flow: bool=True, as_csr_matrix: bool=False) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ A matrix of size "nb bus" "nb bus". Each row and columns represent a "bus" of the grid ("bus" is a power system word that for computer scientist means "nodes" if the powergrid is represented as a graph). See the note in case of a grid in "game over" mode. The diagonal will sum the power produced and consumed at each bus. The other element of each **row** of this matrix will be the flow of power from the bus represented by the line i to the bus represented by column j. .. warning:: The matrix returned by this function has not a fixed size. Its number of nodes and edges can change depending on the state of the grid. See :ref:`get-the-graph-gridgraph` for more information. Also, note that when "done=True" this matrix has size (1, 1) and contains only 0. Notes ------ When the observation is in a "done" state (*eg* there has been a game over) then this function returns a "matrix" of dimension (1,1) [yes, yes it's a scalar] with only one element that is 0. In this case, `load_bus`, `prod_bus`, `stor_bus`, `lor_bus` and `lex_bus` are vectors full of 0. Parameters ---------- active_flow: ``bool`` Whether to get the active flow (in MW) or the reactive flow (in MVAr). Defaults to active flow. as_csr_matrix: ``bool`` Whether to retrieve the results as a scipy csr sparse matrix or as a dense matrix (default) Returns ------- res: ``matrix`` Which can either be a sparse matrix or a dense matrix depending on the value of the argument "as_csr_matrix". mappings: ``tuple`` The mapping that makes the correspondence between each object and the bus to which it is connected. It is made of 4 elements: (load_bus, prod_bus, stor_bus, lor_bus, lex_bus). For example if `load_bus[i] = 14` it means that the load with id `i` is connected to the bus 14. If `load_bus[i] = -1` then the object is disconnected. Examples -------- Here is how you can use this function: .. code-block:: python flow_mat, (load, prod, stor, ind_lor, ind_lex) = obs.flow_bus_matrix() # flow_mat is the matrix described above. Lots of information can be deduce from this matrix. For example if you want to know how much power goes from one bus say bus `i` to another bus (say bus `j` ) you can look at the associated coefficient `flow_mat[i,j]` which will also be related to the flow on the origin (or extremity) side of the powerline connecting bus `i` to bus `j` You can also know how much power (total generation + total storage discharging - total load - total storage charging) is injected at each bus `i` by looking at the `i` th diagonal coefficient. Another use would be to check if the current powergrid state (as seen by grid2op) meet the Kirchhoff circuit laws (conservation of energy), by doing the sum (row by row) of this matrix. `flow_mat.sum(axis=1)` """ cls = type(self) if self._is_done: flow_mat = csr_matrix((1,1), dtype=dt_float) if not as_csr_matrix: flow_mat = flow_mat.toarray() load_bus = np.zeros(cls.n_load, dtype=dt_int) prod_bus = np.zeros(cls.n_gen, dtype=dt_int) stor_bus = np.zeros(cls.n_storage, dtype=dt_int) lor_bus = np.zeros(cls.n_line, dtype=dt_int) lex_bus = np.zeros(cls.n_line, dtype=dt_int) return flow_mat, (load_bus, prod_bus, stor_bus, lor_bus, lex_bus) nb_bus, unique_bus, bus_or, bus_ex = self._aux_fun_get_bus() prod_bus, prod_conn = self._get_bus_id( cls.gen_pos_topo_vect, cls.gen_to_subid ) load_bus, load_conn = self._get_bus_id( cls.load_pos_topo_vect, cls.load_to_subid ) stor_bus, stor_conn = self._get_bus_id( cls.storage_pos_topo_vect, cls.storage_to_subid ) lor_bus, lor_conn = self._get_bus_id( cls.line_or_pos_topo_vect, cls.line_or_to_subid ) lex_bus, lex_conn = self._get_bus_id( cls.line_ex_pos_topo_vect, cls.line_ex_to_subid ) if cls.shunts_data_available: sh_bus = 1 * self._shunt_bus sh_bus[sh_bus > 0] = ( cls.shunt_to_subid[sh_bus > 0] * (sh_bus[sh_bus > 0] - 1) + cls.shunt_to_subid[sh_bus > 0] ) sh_conn = self._shunt_bus != -1 # convert the bus to be "id of row or column in the matrix" instead of the bus id with # the "grid2op convention" all_indx = np.arange(nb_bus) tmplate = np.arange(np.max(unique_bus) + 1) tmplate[unique_bus] = all_indx prod_bus = tmplate[prod_bus] load_bus = tmplate[load_bus] lor_bus = tmplate[lor_bus] lex_bus = tmplate[lex_bus] stor_bus = tmplate[stor_bus] if active_flow: prod_vect = self.gen_p load_vect = self.load_p or_vect = self.p_or ex_vect = self.p_ex stor_vect = self.storage_power if cls.shunts_data_available: sh_vect = self._shunt_p else: prod_vect = self.gen_q load_vect = self.load_q or_vect = self.q_or ex_vect = self.q_ex stor_vect = np.zeros(cls.n_storage, dtype=dt_float) if cls.shunts_data_available: sh_vect = self._shunt_q nb_lor = lor_conn.sum() nb_lex = lex_conn.sum() data = np.zeros(nb_bus + nb_lor + nb_lex, dtype=dt_float) # if two generators / loads / storage unit are connected at the same bus # this is why i go with matrix product and sparse matrices nb_prod = prod_conn.sum() if nb_prod: bus_prod = np.arange(prod_bus[prod_conn].max() + 1) map_mat = csr_matrix( (np.ones(nb_prod), (prod_bus[prod_conn], np.arange(nb_prod))), shape=(bus_prod.shape[0], nb_prod), dtype=dt_float, ) data[bus_prod] += map_mat.dot(prod_vect[prod_conn]) # handle load nb_load = load_conn.sum() if nb_load: bus_load = np.arange(load_bus[load_conn].max() + 1) map_mat = csr_matrix( (np.ones(nb_load), (load_bus[load_conn], np.arange(nb_load))), shape=(bus_load.shape[0], nb_load), dtype=dt_float, ) data[bus_load] -= map_mat.dot(load_vect[load_conn]) # handle storage nb_stor = stor_conn.sum() if nb_stor: bus_stor = np.arange(stor_bus[stor_conn].max() + 1) map_mat = csr_matrix( (np.ones(nb_stor), (stor_bus[stor_conn], np.arange(nb_stor))), shape=(bus_stor.shape[0], nb_stor), dtype=dt_float, ) data[bus_stor] -= map_mat.dot(stor_vect[stor_conn]) if cls.shunts_data_available: # handle shunts nb_shunt = sh_conn.sum() if nb_shunt: bus_shunt = np.arange(sh_bus[sh_conn].max() + 1) map_mat = csr_matrix( (np.ones(nb_shunt), (sh_bus[sh_conn], np.arange(nb_shunt))), shape=(bus_shunt.shape[0], nb_shunt), dtype=dt_float, ) data[bus_shunt] -= map_mat.dot(sh_vect[sh_conn]) # powerlines data[np.arange(nb_lor) + nb_bus] -= or_vect[lor_conn] data[np.arange(nb_lex) + nb_bus + nb_lor] -= ex_vect[lex_conn] row_ind = np.concatenate((all_indx, lor_bus[lor_conn], lex_bus[lex_conn])) col_ind = np.concatenate((all_indx, lex_bus[lex_conn], lor_bus[lor_conn])) res = csr_matrix( (data, (row_ind, col_ind)), shape=(nb_bus, nb_bus), dtype=dt_float ) if not as_csr_matrix: res = res.toarray() return res, (load_bus, prod_bus, stor_bus, lor_bus, lex_bus)
def _add_edges_simple(self, vector, attr_nm, lor_bus, lex_bus, graph, fun_reduce=None): """add the edges, when the attributes are common for the all the powerline""" dict_ = {} for lid, val in enumerate(vector): if not self.line_status[lid]: # see issue https://github.com/rte-france/Grid2Op/issues/433 continue tup_ = (lor_bus[lid], lex_bus[lid]) if not tup_ in dict_: # data is not in the graph, I insert it dict_[tup_] = val else: # data is already in the graph, so I need to either "reduce" the 2 data (if # they are not the same) or "do nothing" # in the case i need to "reduce" the two and I did not provide a "fun_reduce" # I throw an error if fun_reduce is None: if val != dict_[tup_]: raise BaseObservationError(f"Impossible to merge data of type '{attr_nm}'. There are " f"some parrallel lines merged into the same edges " f"but I don't know how to merge their data.") else: dict_[tup_] = fun_reduce(dict_[tup_], val) networkx.set_edge_attributes(graph, dict_, attr_nm) def _add_edges_multi(self, vector_or, vector_ex, attr_nm, lor_bus, lex_bus, graph): """ Utilities to add attributes of the edges of the graph in networkx, because edges are not necessarily "oriented" the same way (so we need to reverse or / ex if networkx oriented it in the same way) """ dict_or_glop = {} for lid, val in enumerate(vector_or): if not self.line_status[lid]: # see issue https://github.com/rte-france/Grid2Op/issues/433 continue tup_ = (lor_bus[lid], lex_bus[lid]) if tup_ in dict_or_glop: dict_or_glop[tup_] += val else: dict_or_glop[tup_] = val dict_ex_glop = {} for lid, val in enumerate(vector_ex): if not self.line_status[lid]: # see issue https://github.com/rte-france/Grid2Op/issues/433 continue tup_ = (lor_bus[lid], lex_bus[lid]) if tup_ in dict_ex_glop: dict_ex_glop[tup_] += val else: dict_ex_glop[tup_] = val dict_or = {} dict_ex = {} for (k1, k2), val in dict_or_glop.items(): if k1 < k2: # networkx put it in the right "direction" dict_or[(k1, k2)] = val else: # networkx and grid2op do not share the same "direction" dict_or[(k2, k1)] = dict_ex_glop[(k1, k2)] for (k1, k2), val in dict_ex_glop.items(): if k1 < k2: # networkx put it in the right "direction" dict_ex[(k1, k2)] = val else: # networkx and grid2op do not share the same "direction" dict_ex[(k2, k1)] = dict_or_glop[(k1, k2)] networkx.set_edge_attributes(graph, dict_or, "{}_or".format(attr_nm)) networkx.set_edge_attributes(graph, dict_ex, "{}_ex".format(attr_nm))
[docs] def as_networkx(self) -> networkx.Graph: """Old name for :func:`BaseObservation.get_energy_graph`, will be removed in the future. """ return self.get_energy_graph()
[docs] def get_energy_graph(self) -> networkx.Graph: """ Convert this observation as a networkx graph. This graph is the graph "seen" by "the electron" / "the energy" of the power grid. .. versionchanged:: 1.10.0 Addition of the attribute `local_bus_id` and `global_bus_id` for the nodes of the returned graph. `local_bus_id` give the local bus id (from 1 to `obs.n_busbar_per_sub`) id of the bus represented by this node. `global_bus_id` give the global bus id (from 0 to `obs.n_busbar_per_sub * obs.n_sub - 1`) id of the bus represented by this node. Addition of the attribute `global_bus_or` and `global_bus_ex` for the edges of the returned graph. These provides the global id of the `origin` / `ext` side to which powerline(s) represented by this edge is (are) connected. Notes ------ The resulting graph is "frozen" this means that you cannot add / remove attribute on nodes or edges, nor add / remove edges or nodes. This graphs has the following properties: - it counts as many nodes as the number of buses of the grid (so it has a dynamic size !) - it counts less edges than the number of lines of the grid (two lines connecting the same buses are "merged" into one single edge - this is the case for parallel line, that are hence "merged" into the same edge) - nodes (represents "buses" of the grid) have attributes: - `p`: the active power produced at this node (negative means the sum of power produce minus power absorbed is negative) in MW - `q`: the reactive power produced at this node in MVAr - `v`: the voltage magnitude at this node - `cooldown`: how much longer you need to wait before being able to merge / split or change this node - 'sub_id': the id of the substation to which it is connected (typically between `0` and `obs.n_sub - 1`) - 'local_bus_id': the local bus id (from 1 to `obs.n_busbar_per_sub`) of the bus represented by this node (new in version 1.10.0) - 'global_bus_id': the global bus id (from 0 to `obs.n_busbar_per_sub * obs.n_sub - 1`) of the bus represented by this node (new in version 1.10.0) - `cooldown` : the time you need to wait (in number of steps) before being able to act on the substation to which this bus is connected. - (optional) `theta`: the voltage angle (in degree) at this nodes - edges have attributes too (in this modeling an edge might represent more than one powerline, all parallel powerlines are represented by the same edge): - `nb_connected`: number of connected powerline represented by this edge. - `rho`: the relative flow on this powerline (in %) (sum over all powerlines)) - `cooldown`: the number of step you need to wait before being able to act on this powerline (max over all powerlines) - `thermal_limit`: maximum flow allowed on the the powerline (sum over all powerlines) - `timestep_overflow`: number of time steps during which the powerline is on overflow (max over all powerlines) - `p_or`: active power injected at this node at the "origin side" (in MW) (sum over all the powerlines). - `p_ex`: active power injected at this node at the "extremity side" (in MW) (sum over all the powerlines). - `q_or`: reactive power injected at this node at the "origin side" (in MVAr) (sum over all the powerlines). - `q_ex`: reactive power injected at this node at the "extremity side" (in MVAr) (sum over all the powerlines). - `a_or`: current flow injected at this node at the "origin side" (in A) (sum over all the powerlines) (sum over all powerlines). - `a_ex`: current flow injected at this node at the "extremity side" (in A) (sum over all the powerlines) (sum over all powerlines). - `p`: active power injected at the "or" side (equal to p_or) (in MW) - `v_or`: voltage magnitude at the "or" bus (in kV) - `v_ex`: voltage magnitude at the "ex" bus (in kV) - `time_next_maintenance`: see :attr:`BaseObservation.time_next_maintenance` (min over all powerline) - `duration_next_maintenance` see :attr:`BaseObservation.duration_next_maintenance` (max over all powerlines) - `sub_id_or`: id of the substation of the "or" side of the powerlines - `sub_id_ex`: id of the substation of the "ex" side of the powerlines - `node_id_or`: id of the node (in this graph) of the "or" side of the powergraph - `node_id_ex`: id of the node (in this graph) of the "ex" side of the powergraph - `bus_or`: on which bus [1 or 2 or 3, etc.] is this powerline connected to at its "or" substation (this is the local id of the bus) - `bus_ex`: on which bus [1 or 2 or 3, etc.] is this powerline connected to at its "ex" substation (this is the local id of the bus) - 'global_bus_or': the global bus id (from 0 to `obs.n_busbar_per_sub * obs.n_sub - 1`) of the bus to which the origin side of the line(s) represented by this edge is (are) connected (new in version 1.10.0) - 'global_bus_ex': the global bus id (from 0 to `obs.n_busbar_per_sub * obs.n_sub - 1`) of the bus to which the ext side of the line(s) represented by this edge is (are) connected (new in version 1.10.0) - (optional) `theta_or`: voltage angle at the "or" bus (in deg) - (optional) `theta_ex`: voltage angle at the "ex" bus (in deg) .. danger:: **IMPORTANT NOTE** edges represents "fusion" of 1 or more powerlines. This graph is intended to be a Graph and not a MultiGraph on purpose. This is why sometimes some attributes of the edges are not the same of the attributes of a given powerlines. For example, in the case of 2 parrallel powerlines (say powerlines 3 and 4) going from bus 10 to bus 12 (for example), the edges graph.edges[(10, 12)]["nb_connected"] will be `2` and you will get `graph.edges[(10, 12)]["p_or"] = obs.p_or[3] + obs.p_or[4]` .. warning:: The graph returned by this function has not a fixed size. Its number of nodes and edges can change depending on the state of the grid. See :ref:`get-the-graph-gridgraph` for more information. Also, note that when "done=True" this graph has only one node and no edge. .. note:: The graph returned by this function is "frozen" to prevent its modification. If you really want to modify it you can "unfroze" it. Returns ------- graph: ``networkx graph`` A possible representation of the observation as a networkx graph Examples -------- The following code explains how to check that a grid meet the kirchoffs law (conservation of energy) .. code-block:: python # create an environment and get the observation import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() # retrieve the networkx graph graph = obs.get_energy_graph() # perform the check for every nodes for node_id in graph.nodes: # retrieve power (active and reactive) produced at this node p_ = graph.nodes[node_id]["p"] q_ = graph.nodes[node_id]["q"] # get the edges edges = graph.edges(node_id) p_lines = 0 q_lines = 0 # get the power that is "evacuated" at each nodes on all the edges connecting it to the other nodes # of the network for (k1, k2) in edges: # now retrieve the active / reactive power injected at this node (looking at either *_or or *_ex # depending on the direction of the powerline: remember that the "origin" is always the lowest # bus id. if k1 < k2: # the current inspected node is the lowest, so on the "origin" side p_lines += graph.edges[(k1, k2)]["p_or"] q_lines += graph.edges[(k1, k2)]["q_or"] else: # the current node is the largest, so on the "extremity" side p_lines += graph.edges[(k1, k2)]["p_ex"] q_lines += graph.edges[(k1, k2)]["q_ex"] assert abs(p_line - p_) <= 1e-5, "error for kirchoff's law for graph for P" assert abs(q_line - q_) <= 1e-5, "error for kirchoff's law for graph for Q" """ cls = type(self) # TODO save this graph somewhere, in a self._as_networkx attributes for example mat_p, (load_bus, gen_bus, stor_bus, lor_bus, lex_bus) = self.flow_bus_matrix( active_flow=True, as_csr_matrix=True ) mat_q, *_ = self.flow_bus_matrix(active_flow=False, as_csr_matrix=True) # for efficiency mat_p = mat_p.tocoo() # bus voltage bus_v = np.zeros(mat_p.shape[0]) # i need to put lor_bus[self.line_status] otherwise pandapower might not detect a line # is disconnected and output the "wrong" voltage / theta in the graph # see issue https://github.com/rte-france/Grid2Op/issues/389 bus_v[lor_bus[self.line_status]] = self.v_or[self.line_status] bus_v[lex_bus[self.line_status]] = self.v_ex[self.line_status] bus_theta = np.zeros(mat_p.shape[0]) bus_subid = np.zeros(mat_p.shape[0], dtype=dt_int) bus_subid[lor_bus[self.line_status]] = cls.line_or_to_subid[self.line_status] bus_subid[lex_bus[self.line_status]] = cls.line_ex_to_subid[self.line_status] loc_bus_id = np.zeros(mat_p.shape[0], dtype=int) loc_bus_id[lor_bus[self.line_status]] = self.topo_vect[cls.line_or_pos_topo_vect[self.line_status]] loc_bus_id[lex_bus[self.line_status]] = self.topo_vect[cls.line_ex_pos_topo_vect[self.line_status]] glob_bus_id = cls.local_bus_to_global(loc_bus_id, bus_subid) if self.support_theta: bus_theta[lor_bus[self.line_status]] = self.theta_or[self.line_status] bus_theta[lex_bus[self.line_status]] = self.theta_ex[self.line_status] # bus active injection bus_p = mat_p.diagonal().copy() mat_p.setdiag(0.0) mat_p.eliminate_zeros() # create the networkx graph try: graph = networkx.from_scipy_sparse_array(mat_p, edge_attribute="p") except AttributeError: # oldest version of scipy did not have the `from_scipy_sparse_array` function graph = networkx.from_scipy_sparse_matrix(mat_p, edge_attribute="p") if not len(graph.edges): return graph # add the nodes attributes networkx.set_node_attributes( graph, {el: val for el, val in enumerate(bus_p)}, "p" ) networkx.set_node_attributes( graph, {el: val for el, val in enumerate(mat_q.diagonal())}, "q" ) networkx.set_node_attributes( graph, {el: val for el, val in enumerate(bus_v)}, "v" ) networkx.set_node_attributes( graph, {el: val for el, val in enumerate(bus_subid)}, "sub_id" ) if self.support_theta: networkx.set_node_attributes( graph, {el: val for el, val in enumerate(bus_theta)}, "theta" ) networkx.set_node_attributes(graph, {el: self.time_before_cooldown_sub[val] for el, val in enumerate(bus_subid)}, "cooldown") # add local_id and global_id as attribute to the node of this graph networkx.set_node_attributes( graph, {el: val for el, val in enumerate(loc_bus_id)}, "local_bus_id" ) networkx.set_node_attributes( graph, {el: val for el, val in enumerate(glob_bus_id)}, "global_bus_id" ) # add the edges attributes self._add_edges_multi(self.p_or, self.p_ex, "p", lor_bus, lex_bus, graph) self._add_edges_multi(self.q_or, self.q_ex, "q", lor_bus, lex_bus, graph) self._add_edges_multi(self.a_or, self.a_ex, "a", lor_bus, lex_bus, graph) if self.support_theta: self._add_edges_multi( self.theta_or, self.theta_ex, "theta", lor_bus, lex_bus, graph ) self._add_edges_simple(self.v_or, "v_or", lor_bus, lex_bus, graph) self._add_edges_simple(self.v_ex, "v_ex", lor_bus, lex_bus, graph) self._add_edges_simple(self.rho, "rho", lor_bus, lex_bus, graph, fun_reduce=max) self._add_edges_simple( self.time_before_cooldown_line, "cooldown", lor_bus, lex_bus, graph, fun_reduce=max ) self._add_edges_simple( self._thermal_limit, "thermal_limit", lor_bus, lex_bus, graph, fun_reduce=lambda x, y: x+y ) self._add_edges_simple( self.time_next_maintenance, "time_next_maintenance", lor_bus, lex_bus, graph, fun_reduce=min) self._add_edges_simple( self.duration_next_maintenance, "duration_next_maintenance", lor_bus, lex_bus, graph, fun_reduce=max) self._add_edges_simple(1 * self.line_status, "nb_connected", lor_bus, lex_bus, graph, fun_reduce=lambda x, y: x + y) self._add_edges_simple( self.timestep_overflow, "timestep_overflow", lor_bus, lex_bus, graph, fun_reduce=max ) self._add_edges_simple( self.line_or_to_subid, "sub_id_or", lor_bus, lex_bus, graph ) self._add_edges_simple( self.line_ex_to_subid, "sub_id_ex", lor_bus, lex_bus, graph ) self._add_edges_simple( lor_bus, "node_id_or", lor_bus, lex_bus, graph ) self._add_edges_simple( lex_bus, "node_id_ex", lor_bus, lex_bus, graph ) self._add_edges_simple( self.line_or_bus, "bus_or", lor_bus, lex_bus, graph ) self._add_edges_simple( self.line_ex_bus, "bus_ex", lor_bus, lex_bus, graph ) self._add_edges_simple( glob_bus_id[lor_bus], "global_bus_or", lor_bus, lex_bus, graph ) self._add_edges_simple( glob_bus_id[lex_bus], "global_bus_ex", lor_bus, lex_bus, graph ) # extra layer of security: prevent accidental modification of this graph networkx.freeze(graph) return graph
def _aux_get_connected_buses(self): cls = type(self) res = np.full(cls.n_busbar_per_sub * cls.n_sub, fill_value=False) global_bus = cls.local_bus_to_global(self.topo_vect, cls._topo_vect_to_sub) res[global_bus[global_bus != -1]] = True return res def _aux_add_edges(self, el_ids, cls, el_global_bus, nb_el, el_connected, el_name, edges_prop, graph ): edges_el = [(el_ids[el_id], cls.n_sub + el_global_bus[el_id]) if el_connected[el_id] else None for el_id in range(nb_el) ] li_el_edges = [(*edges_el[el_id], {"id": el_id, "type": f"{el_name}_to_bus"}) for el_id in range(nb_el) if el_connected[el_id]] if edges_prop is not None: ed_num = 0 # edge number for el_id in range(nb_el): if not el_connected[el_id]: continue for prop_nm, prop_vect in edges_prop: li_el_edges[ed_num][-1][prop_nm] = prop_vect[el_id] ed_num += 1 graph.add_edges_from(li_el_edges) return li_el_edges def _aux_add_el_to_comp_graph(self, graph, first_id, el_names_vect, el_name, nb_el, el_bus=None, el_to_sub_id=None, nodes_prop=None, edges_prop=None): if el_bus is None and el_to_sub_id is not None: raise Grid2OpException("el_bus is None and el_to_sub_id is not None") if el_bus is not None and el_to_sub_id is None: raise Grid2OpException("el_bus is not None and el_to_sub_id is None") cls = type(self) # add the nodes for the elements of this types el_ids = first_id + np.arange(nb_el) # add the properties for these nodes li_el_node = [(el_ids[el_id], {"id": el_id, "type": f"{el_name}", "name": el_names_vect[el_id] } ) for el_id in range(nb_el)] if el_bus is not None: el_global_bus = cls.local_bus_to_global(el_bus, el_to_sub_id) el_connected = np.array(el_global_bus) >= 0 for el_id in range(nb_el): li_el_node[el_id][-1]["connected"] = el_connected[el_id] li_el_node[el_id][-1]["local_bus"] = el_bus[el_id] li_el_node[el_id][-1]["global_bus"] = el_global_bus[el_id] if nodes_prop is not None: for el_id in range(nb_el): for prop_nm, prop_vect in nodes_prop: li_el_node[el_id][-1][prop_nm] = prop_vect[el_id] if el_bus is None and el_to_sub_id is None: graph.add_nodes_from(li_el_node) graph.graph[f"{el_name}_nodes_id"] = el_ids return el_ids # add the edges li_el_edges = self._aux_add_edges(el_ids, cls, el_global_bus, nb_el, el_connected, el_name, edges_prop, graph) for el_id, (el_node_id, edege_id, *_) in enumerate(li_el_edges): li_el_node[el_id][-1]["bus_node_id"] = edege_id graph.add_nodes_from(li_el_node) graph.graph[f"{el_name}_nodes_id"] = el_ids return el_ids def _aux_add_buses(self, graph, cls, first_id): bus_ids = first_id + np.arange(cls.n_busbar_per_sub * cls.n_sub) conn_bus = self._aux_get_connected_buses() bus_li = [ (bus_ids[bus_id], {"id": bus_id, "global_id": bus_id, "local_id": type(self).global_bus_to_local_int(bus_id, None), "type": "bus", "connected": conn_bus[bus_id]} ) for bus_id in range(cls.n_busbar_per_sub * cls.n_sub) ] graph.add_nodes_from(bus_li) edge_bus_li = [(bus_id, bus_id % cls.n_sub, {"type": "bus_to_substation"}) for id_, bus_id in enumerate(bus_ids)] graph.add_edges_from(edge_bus_li) graph.graph["bus_nodes_id"] = bus_ids return bus_ids def _aux_add_loads(self, graph, cls, first_id): edges_prop=[ ("p", self.load_p), ("q", self.load_q), ("v", self.load_v) ] if self.support_theta: edges_prop.append(("theta", self.load_theta)) load_ids = self._aux_add_el_to_comp_graph(graph, first_id, cls.name_load, "load", cls.n_load, self.load_bus, cls.load_to_subid, nodes_prop=None, edges_prop=edges_prop) return load_ids def _aux_add_gens(self, graph, cls, first_id): nodes_prop = [("target_dispatch", self.target_dispatch), ("actual_dispatch", self.actual_dispatch), ("gen_p_before_curtail", self.gen_p_before_curtail), ("curtailment_mw", self.curtailment_mw), ("curtailment", self.curtailment), ("curtailment_limit", self.curtailment_limit), ("gen_margin_up", self.gen_margin_up), ("gen_margin_down", self.gen_margin_down) ] # todo class attributes gen_max_ramp_up etc. edges_prop=[ ("p", - self.gen_p), ("q", - self.gen_q), ("v", self.gen_v) ] if self.support_theta: edges_prop.append(("theta", self.gen_theta)) gen_ids = self._aux_add_el_to_comp_graph(graph, first_id, cls.name_gen, "gen", cls.n_gen, self.gen_bus, cls.gen_to_subid, nodes_prop=nodes_prop, # todo cls attributes edges_prop=edges_prop) return gen_ids def _aux_add_storages(self, graph, cls, first_id): nodes_prop = [("storage_charge", self.storage_charge), ("storage_power_target", self.storage_power_target)] # TODO class attr in nodes_prop: storageEmax etc. edges_prop=[("p", self.storage_power)] if self.support_theta: edges_prop.append(("theta", self.storage_theta)) sto_ids = self._aux_add_el_to_comp_graph(graph, first_id, cls.name_storage, "storage", cls.n_storage, self.storage_bus, cls.storage_to_subid, nodes_prop=nodes_prop, edges_prop=edges_prop ) return sto_ids def _aux_add_edge_line_side(self, cls, graph, bus, sub_id, line_node_ids, side, p_vect, q_vect, v_vect, a_vect, theta_vect): global_bus = cls.local_bus_to_global(bus, sub_id) conn_ = np.array(global_bus) >= 0 edges_prop = [ ("p", p_vect), ("q", q_vect), ("v", v_vect), ("a", a_vect), ("side", [side for _ in range(p_vect.size)]) ] if theta_vect is not None: edges_prop.append(("theta", theta_vect)) res = self._aux_add_edges(line_node_ids, cls, global_bus, cls.n_line, conn_, "line", edges_prop, graph) return res def _aux_add_local_global(self, cls, graph, lin_ids, el_loc_bus, xxx_subid, side): el_global_bus = cls.local_bus_to_global(el_loc_bus, xxx_subid) dict_ = {} for el_node_id, loc_bus in zip(lin_ids, el_loc_bus): dict_[el_node_id] = loc_bus networkx.set_node_attributes( graph, dict_, f"local_bus_{side}" ) dict_ = {} for el_node_id, glob_bus in zip(lin_ids, el_global_bus): dict_[el_node_id] = glob_bus networkx.set_node_attributes( graph, dict_, f"global_bus_{side}" ) def _aux_add_lines(self, graph, cls, first_id): nodes_prop = [("rho", self.rho), ("connected", self.line_status), ("timestep_overflow", self.timestep_overflow), ("time_before_cooldown_line", self.time_before_cooldown_line), ("time_next_maintenance", self.time_next_maintenance), ("duration_next_maintenance", self.duration_next_maintenance), ] # only add the nodes, not the edges right now lin_ids = self._aux_add_el_to_comp_graph(graph, first_id, cls.name_line, "line", cls.n_line, el_bus=None, el_to_sub_id=None, nodes_prop=nodes_prop, edges_prop=None ) self._aux_add_local_global(cls, graph, lin_ids, self.line_or_bus, cls.line_or_to_subid, "or") self._aux_add_local_global(cls, graph, lin_ids, self.line_ex_bus, cls.line_ex_to_subid, "ex") # add "or" edges li_el_edges_or = self._aux_add_edge_line_side(cls, graph, self.line_or_bus, cls.line_or_to_subid, lin_ids, "or", self.p_or, self.q_or, self.v_or, self.a_or, self.theta_or if self.support_theta else None) dict_or = {} for el_id, (el_node_id, edege_id, *_) in enumerate(li_el_edges_or): dict_or[el_node_id] = edege_id networkx.set_node_attributes( graph, dict_or, "bus_node_id_or" ) # add "ex" edges li_el_edges_ex = self._aux_add_edge_line_side(cls, graph, self.line_ex_bus, cls.line_ex_to_subid, lin_ids, "ex", self.p_ex, self.q_ex, self.v_ex, self.a_ex, self.theta_ex if self.support_theta else None) dict_ex = {} for el_id, (el_node_id, edege_id, *_) in enumerate(li_el_edges_ex): dict_ex[el_node_id] = edege_id networkx.set_node_attributes( graph, dict_ex, "bus_node_id_ex" ) return lin_ids def _aux_add_shunts(self, graph, cls, first_id): nodes_prop = None # TODO in grid2Op in general: have the "tap" modeling # for shunt edges_prop=[("p", self._shunt_p), ("q", self._shunt_q), ("v", self._shunt_v), ] sto_ids = self._aux_add_el_to_comp_graph(graph, first_id, cls.name_shunt, "shunt", cls.n_shunt, self._shunt_bus, cls.shunt_to_subid, nodes_prop=nodes_prop, edges_prop=edges_prop ) return sto_ids
[docs] def get_elements_graph(self) -> networkx.DiGraph: """This function returns the "elements graph" as a networkx object. .. seealso:: This object is extensively described in the documentation, see :ref:`elmnt-graph-gg` for more information. Basically, each "element" of the grid (element = a substation, a bus, a load, a generator, a powerline, a storate unit or a shunt) is represented by a node in this graph. There might be some edges between the nodes representing buses and the nodes representing substations, indicating "this bus is part of this substation". There might be some edges between the nodes representing load / generator / powerline / storage unit / shunt and the nodes representing buses, indicating "this load / generator / powerline / storage unit is connected to this bus". Nodes and edges of this graph have different attributes depending on the underlying element they represent. For a detailed description, please refer to the documentation: :ref:`elmnt-graph-gg` Examples --------- You can use, for example to "check" Kirchoff Current Law (or at least that no energy is created at none of the buses): .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name... env = grid2op.make(env_name) obs = env.reset() # retrieve the graph and do something elmnt_graph = obs.get_elements_graph() for bus_id, node_id in enumerate(elmnt_graph.graph["bus_nodes_id"]): sum_p = 0. sum_q = 0. for ancestor in graph.predecessors(node_id): # ancestor is the id of a node representing an element connected to this # bus this_edge = graph.edges[(ancestor, node_id)] if "p" in this_edge: sum_p += this_edge["p"] if "q" in this_edge: sum_q += this_edge["q"] assert abs(sum_p) <= self.tol, f"error for node {node_id} representing bus {bus_id}: {abs(sum_p)} != 0." assert abs(sum_q) <= self.tol, f"error for node {node_id} representing bus {bus_id}: {abs(sum_q)} != 0." Returns ------- networkx.DiGraph The "elements graph", see :ref:`elmnt-graph-gg` . """ cls = type(self) # init the graph with "grid level" attributes graph = networkx.DiGraph(max_step=self.max_step, current_step=self.current_step, delta_time=self.delta_time, year=self.year, month=self.month, day=self.day, hour_of_day=self.hour_of_day, minute_of_hour=self.minute_of_hour, day_of_week=self.day_of_week, time_stamp=self.get_time_stamp() ) # add the substations sub_li = [(sub_id, {"id": sub_id, "type": "substation", "name": cls.name_sub[sub_id], "cooldown": self.time_before_cooldown_sub[sub_id]} ) for sub_id in range(cls.n_sub)] graph.add_nodes_from(sub_li) graph.graph["substation_nodes_id"] = np.arange(cls.n_sub) # handle the buses bus_ids = self._aux_add_buses(graph, cls, cls.n_sub) # handle loads load_ids = self._aux_add_loads(graph, cls, bus_ids[-1] + 1) # handle gens gen_ids = self._aux_add_gens(graph, cls, load_ids[-1] + 1) # handle lines line_ids = self._aux_add_lines(graph, cls, gen_ids[-1] + 1) # handle storages sto_ids = self._aux_add_storages(graph, cls, line_ids[-1] + 1) next_id = line_ids[-1] + 1 if sto_ids.size > 0: next_id = sto_ids[-1] + 1 # handle shunts if cls.shunts_data_available: shunt_ids = self._aux_add_shunts(graph, cls, next_id) if shunt_ids.size > 0: next_id = shunt_ids[-1] + 1 # and now we use the data above to put the right properties to the nodes for the buses bus_v_theta = {} for bus_id in bus_ids: li_pred = list(graph.predecessors(n=bus_id)) if li_pred: edge = (li_pred[0], bus_id) bus_v_theta[bus_id] = {"connected": True, "v": graph.edges[edge]["v"]} if "theta" in graph.edges[edge]: bus_v_theta[bus_id]["theta"] = graph.edges[edge]["theta"] else: bus_v_theta[bus_id] = {"connected": False} networkx.set_node_attributes(graph, bus_v_theta) # extra layer of security: prevent accidental modification of this graph networkx.freeze(graph) return graph
[docs] def get_forecasted_inj(self, time_step:int =1) -> np.ndarray: """ This function allows you to retrieve directly the "forecast" injections for the step `time_step`. We remind that the environment, under some conditions, can produce these forecasts automatically. This function allows to retrieve what has been forecast. Parameters ---------- time_step: ``int`` The horizon of the forecast (given in number of time steps) Returns ------- gen_p_f: ``numpy.ndarray`` The forecast generators active values gen_v_f: ``numpy.ndarray`` The forecast generators voltage setpoins load_p_f: ``numpy.ndarray`` The forecast load active consumption load_q_f: ``numpy.ndarray`` The forecast load reactive consumption """ if time_step >= len(self._forecasted_inj): raise NoForecastAvailable( "Forecast for {} timestep ahead is not possible with your chronics.".format( time_step ) ) cls = type(self) t, a = self._forecasted_inj[time_step] prod_p_f = np.full(cls.n_gen, fill_value=np.NaN, dtype=dt_float) prod_v_f = np.full(cls.n_gen, fill_value=np.NaN, dtype=dt_float) load_p_f = np.full(cls.n_load, fill_value=np.NaN, dtype=dt_float) load_q_f = np.full(cls.n_load, fill_value=np.NaN, dtype=dt_float) if "prod_p" in a["injection"]: prod_p_f = a["injection"]["prod_p"] if "prod_v" in a["injection"]: prod_v_f = a["injection"]["prod_v"] if "load_p" in a["injection"]: load_p_f = a["injection"]["load_p"] if "load_q" in a["injection"]: load_q_f = a["injection"]["load_q"] tmp_arg = ~np.isfinite(prod_p_f) prod_p_f[tmp_arg] = self.gen_p[tmp_arg] tmp_arg = ~np.isfinite(prod_v_f) prod_v_f[tmp_arg] = self.gen_v[tmp_arg] tmp_arg = ~np.isfinite(load_p_f) load_p_f[tmp_arg] = self.load_p[tmp_arg] tmp_arg = ~np.isfinite(load_q_f) load_q_f[tmp_arg] = self.load_q[tmp_arg] return prod_p_f, prod_v_f, load_p_f, load_q_f
[docs] def get_time_stamp(self) -> datetime.datetime: """ Get the time stamp of the current observation as a `datetime.datetime` object """ res = datetime.datetime( year=self.year, month=self.month, day=self.day, hour=self.hour_of_day, minute=self.minute_of_hour, ) return res
[docs] def simulate(self, action : "grid2op.Action.BaseAction", time_step:int=1) -> Tuple["BaseObservation", float, bool, STEP_INFO_TYPING]: """ This method is used to simulate the effect of an action on a forecast powergrid state. This forecast state is built upon the current observation. The forecast are pre computed by the environment. More concretely, if not deactivated by the environment (see :func:`grid2op.Environment.BaseEnv.deactivate_forecast`) and the environment has the capacity to generate these forecasts (which is the case in most grid2op environments) this function will simulate the effect of doing an action now and return the "next state" (often the state you would get at time `t + 5` mins) if you were to do the action at this step. It has the same return value as the :func:`grid2op.Environment.BaseEnv.step` function. .. seealso:: :func:`BaseObservation.get_forecast_env` and :func:`BaseObservation.get_env_from_external_forecasts` .. seealso:: :ref:`model_based_rl` .. versionadded:: 1.9.0 If the data of the :class:`grid2op.Environment.Environment` you are using supports it (**ie** you can access multiple steps ahead forecasts), then you can now "chain" the simulate calls. .. danger:: A simulation can be different from the reality, even in case of perfect forecast or if you "simulate" an action on the current step (time_step=0). For example, the solver used can be different for "simulate" and for the environment "step" or you can be a setting with noisy action. A more subtle difference includes the "initialization" of the solver which is different in env.step and in obs.simulate so the outcomes of the solver might be different (this is especially relevant for larger grid). Even more subtle is the behaviour of the ramps for some generators. More concretely, say you want to dispatch upward a generator (with a ramp of +5) of +5MW at a given step. But in the same time this generator would see its production increased by +2MW "naturally" in the time series. Then, grid2op would limit the increase of +5MW (instead of +7 = +5 +2) by limiting the redispatching action to +3MW. If you simulate the same action on the resulting step, as there are no "previous step" then your action will not be limited and the +5MW of redispatching will be given. You have the same phenomenon for storage losses: they are applied even if you simulate at the current step and conversely are not applied "multiple times" if you simulate for an horizon longer than 1 (say time_step=2) or if you chain two or more calls to "simulate". Examples --------- If forecast are available, you can use this function like this: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" env = grid2op.make(env_name) obs = env.reset() an_action = env.action_space() # or any other action simobs, sim_reward, sim_done, sim_info = obs.simulate(an_action) # in this case, simobs will be an APPROXIMATION of the observation you will # get after performing `an_action` # obs, *_ = env.step(an_action) And if your environment allows to use "multiple steps ahead forecast" you can even chain the calls like this: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" env = grid2op.make(env_name) obs = env.reset() an_action = env.action_space() # or any other action simobs1, sim_reward1, sim_done1, sim_info1 = obs.simulate(an_action) another_action = env.action_space() # or any other action simobs2, sim_reward2, sim_done2, sim_info2 = simobs1.simulate(another_action) # in this case, simobs will be an APPROXIMATION of the observation you will # get after performing `an_action` and then `another_action`: # *_ = env.step(an_action) # obs, *_ = env.step(another_action) Parameters ---------- action: :class:`grid2op.Action.BaseAction` The action to simulate time_step: ``int`` The time step of the forecasted grid to perform the action on. If no forecast are available for this time step, a :class:`grid2op.Exceptions.NoForecastAvailable` is thrown. Raises ------ :class:`grid2op.Exceptions.NoForecastAvailable` if no forecast are available for the time_step querried. Returns ------- simulated_observation: :class:`grid2op.Observation.BaseObservation` agent's observation of the current environment after the application of the action "act" on the the current state. reward: ``float`` amount of reward returned after previous action done: ``bool`` whether the episode has ended, in which case further step() calls will return undefined results info: ``dict`` contains auxiliary diagnostic information (helpful for debugging, and sometimes learning) Notes ------ This is a simulation in the sense that the "next grid state" is not the real grid state you will get. As you don't know the future, the "injections you forecast for the next step" will not be the real injection you will get in the next step. Also, in some circumstances, the "Backend" (ie the powerflow) used to do the simulation may not be the same one as the one used by the environment. This is to model a real fact: as accurate your powerflow is, it does not model all the reality (*"all models are wrong"*). Having a different solver for the environment ( "the reality") than the one used to anticipate the impact of the action (this "simulate" function) is a way to represent this fact. Examples -------- To simulate what would be the effect of the action "act" if you were to take this action at this step you can do the following: .. code-block:: python import grid2op # retrieve an environment env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) # retrieve an observation, this is the same for all observations obs = env.reset() # and now you can simulate the effect of doing nothing in the next time step act = env.action_space() # this can be any action that grid2op understands simulated_obs, simulated_reward, simulated_done, simulated_info = obs.simulate(act) # `simulated_obs` will be the "observation" after the application of action `act` on the # " forecast of the grid state (it will be the "forecast state at time t+5mins usually) # `simulated_reward` will be the reward for the same action on the same forecast state # `simulated_done` will indicate whether or not the simulation ended up in a "game over" # `simulated_info` gives extra information on this forecast state You can now chain the calls to simulate (if your environment supports it) .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() act_1 = ... # a grid2op action # you can do that (if your environment provide forecasts more tha 1 step ahead): sim_obs_1, *_ = obs.simulate(act_1) act_2 = ... # a grid2op action # but also (if your environment provide forecast more than 2 steps ahead) sim_obs_2, *_ = sim_obs_1.simulate(act_2) act_3 = ... # a grid2op action # but also (if your environment provide forecast more than 3 steps ahead) sim_obs_3, *_ = sim_obs_2.simulate(act_3) # you get the idea! .. note:: The code above is closely related to the :func:`BaseObservation.get_forecast_env` and a very similar result (up to some corner cases beyond the scope of this documentation) could be achieved with: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() forecast_env = obs.get_forecast_env() f_obs = forecast_env.reset() act_1 = ... # a grid2op action f_obs_1, *_ = forecast_env.step(act_1) # f_obs_1 should be sim_obs_1 act_2 = ... # a grid2op action f_obs_2, *_ = forecast_env.step(act_2) # f_obs_2 should be sim_obs_2 act_3 = ... # a grid2op action f_obs_3, *_ = forecast_env.step(act_3) # f_obs_3 should be sim_obs_3 Finally, another possible use of this method is to get a "glimpse" of the effect of an action if you delay it a maximum, you can also use the `time_step` parameters. .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() act = ... # a grid2op action sim_obs_1, *_ = obs.simulate(act, time_step=1) sim_obs_2, *_ = obs.simulate(act, time_step=2) sim_obs_3, *_ = obs.simulate(act, time_step=3) # in this case: # + sim_obs_1 give the results after 1 step (if your agent survives) # of applying the action `act` # + sim_obs_2 give the results after 2 steps (if your agent survives) # of applying the action `act` # + sim_obs_3 give the results after 3 steps (if your agent survives) # of applying the action `act` This is an approximation as the "time is not simulated". Here you only make 1 simulation of the effect of your action regardless of the horizon you want to target. It is related to the :ref:`simulator_page` if used this way. This might be used to chose the "best" time at which you could do an action for example. There is no coupling between the different simulation that you perform here. """ if self.action_helper is None: raise NoForecastAvailable( "No forecasts are available for this instance of BaseObservation " "(no action_space " "and no simulated environment are set)." ) if self._obs_env is None: raise NoForecastAvailable( 'This observation has no "environment used for simulation" (_obs_env) is not created. ' "This is the case if you loaded this observation from a disk (for example using " "EpisodeData) " 'or used a Runner with multi processing with the "add_detailed_output=True" ' "flag or even if you use an environment with a non serializable backend. " "This is a feature of grid2op: it does not require backends to be serializable." ) if time_step < 0: raise NoForecastAvailable("Impossible to forecast in the past.") if time_step >= len(self._forecasted_inj): raise NoForecastAvailable( "Forecast for {} timestep(s) ahead is not possible with your chronics." "".format(time_step) ) if time_step not in self._forecasted_grid_act: timestamp, inj_forecasted = self._forecasted_inj[time_step] self._forecasted_grid_act[time_step] = { "timestamp": timestamp, "inj_action": self.action_helper(inj_forecasted), } timestamp = self._forecasted_grid_act[time_step]["timestamp"] inj_action = self._forecasted_grid_act[time_step]["inj_action"] self._obs_env.init( inj_action, time_stamp=timestamp, obs=self, time_step=time_step, ) sim_obs, *rest = self._obs_env.simulate(action) sim_obs = copy.deepcopy(sim_obs) if self._forecasted_inj: # allow "chain" to simulate sim_obs.action_helper = self.action_helper # no copy ! sim_obs._obs_env = self._obs_env # no copy sim_obs._forecasted_inj = self._forecasted_inj[1:] # remove the first one sim_obs._update_internal_env_params(self._obs_env) return (sim_obs, *rest) # parentheses are needed for python 3.6 at least.
[docs] def copy(self, env=None) -> Self: """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Make a copy of the observation. Returns ------- res: :class:`BaseObservation` The deep copy of the observation Notes -------- The "obs_env" attributes """ obs_env = self._obs_env self._obs_env = None # _obs_env is a pointer, it is not held by this ! action_helper = self.action_helper self.action_helper = None _ptr_kwargs_env = self._ptr_kwargs_env self._ptr_kwargs_env = None res = copy.deepcopy(self) self._obs_env = obs_env self.action_helper = action_helper self._ptr_kwargs_env = _ptr_kwargs_env if env is None: # this will make a copy but the observation will still # be "bound" to the original env res._obs_env = obs_env res.action_helper = action_helper res._ptr_kwargs_env = _ptr_kwargs_env else: # the action will be "bound" to the new environment res._obs_env = env._observation_space.obs_env res.action_helper = env._observation_space.action_helper_env res._ptr_kwargs_env = env._observation_space._real_env_kwargs return res
@property def line_or_bus(self) -> np.ndarray: """ Retrieve the busbar at which each origin side of powerline is connected. The result follow grid2op convention: - -1 means the powerline is disconnected - 1 means it is connected to busbar 1 - 2 means it is connected to busbar 2 - etc. Notes ----- In a same substation, two objects are connected together if (and only if) they are connected to the same busbar. """ res = self.topo_vect[self.line_or_pos_topo_vect] res.flags.writeable = False return res @property def line_ex_bus(self) -> np.ndarray: """ Retrieve the busbar at which each extremity side of powerline is connected. The result follow grid2op convention: - -1 means the powerline is disconnected - 1 means it is connected to busbar 1 - 2 means it is connected to busbar 2 - etc. Notes ----- In a same substation, two objects are connected together if (and only if) they are connected to the same busbar. """ res = self.topo_vect[self.line_ex_pos_topo_vect] res.flags.writeable = False return res @property def gen_bus(self) -> np.ndarray: """ Retrieve the busbar at which each generator is connected. The result follow grid2op convention: - -1 means the generator is disconnected - 1 means it is generator to busbar 1 - 2 means it is connected to busbar 2 - etc. Notes ----- In a same substation, two objects are connected together if (and only if) they are connected to the same busbar. """ res = self.topo_vect[self.gen_pos_topo_vect] res.flags.writeable = False return res @property def load_bus(self) -> np.ndarray: """ Retrieve the busbar at which each load is connected. The result follow grid2op convention: - -1 means the load is disconnected - 1 means it is load to busbar 1 - 2 means it is load to busbar 2 - etc. Notes ----- In a same substation, two objects are connected together if (and only if) they are connected to the same busbar. """ res = self.topo_vect[self.load_pos_topo_vect] res.flags.writeable = False return res @property def storage_bus(self) -> np.ndarray: """ Retrieve the busbar at which each storage unit is connected. The result follow grid2op convention: - -1 means the storage unit is disconnected - 1 means it is storage unit to busbar 1 - 2 means it is connected to busbar 2 - etc. Notes ----- In a same substation, two objects are connected together if (and only if) they are connected to the same busbar. """ res = self.topo_vect[self.storage_pos_topo_vect] res.flags.writeable = False return res @property def prod_p(self) -> np.ndarray: """ As of grid2op version 1.5.0, for better consistency, the "prod_p" attribute has been renamed "gen_p", see the doc of :attr:`BaseObservation.gen_p` for more information. This property is present to maintain the backward compatibility. Returns ------- :attr:`BaseObservation.gen_p` """ return self.gen_p @property def prod_q(self) -> np.ndarray: """ As of grid2op version 1.5.0, for better consistency, the "prod_q" attribute has been renamed "gen_q", see the doc of :attr:`BaseObservation.gen_q` for more information. This property is present to maintain the backward compatibility. Returns ------- :attr:`BaseObservation.gen_q` """ return self.gen_q @property def prod_v(self) -> np.ndarray: """ As of grid2op version 1.5.0, for better consistency, the "prod_v" attribute has been renamed "gen_v", see the doc of :attr:`BaseObservation.gen_v` for more information. This property is present to maintain the backward compatibility. Returns ------- :attr:`BaseObservation.gen_v` """ return self.gen_v
[docs] def sub_topology(self, sub_id) -> np.ndarray: """ Returns the topology of the given substation. We remind the reader that for substation id `sud_id`, its topology is represented by a vector of length `type(obs).subs_info[sub_id]` elements. And for each elements of this vector, you now on which bus (1 or 2) it is connected or if the corresponding element is disconnected (in this case it's -1) Returns ------- """ tmp = self.topo_vect[self._topo_vect_to_sub == sub_id] tmp.flags.writeable = False return tmp
def _reset_matrices(self): self._vectorized = None
[docs] def from_vect(self, vect, check_legit=True): """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ To reload an observation from a vector, use the "env.observation_space.from_vect()". Convert back an observation represented as a vector into a proper observation. Some conversion are done silently from float to the type of the corresponding observation attribute. Parameters ---------- vect: ``numpy.ndarray`` A representation of an BaseObservation in the form of a vector that is used to convert back the current observation to be equal to the vect. """ # reset the matrices self._reset_matrices() # and ensure everything is reloaded properly super().from_vect(vect, check_legit=check_legit) self._is_done = False
[docs] def to_dict(self): """ Transform this observation as a dictionary. This dictionary allows you to inspect the state of this observation and is simply a shortcut of the class instance. Returns ------- A dictionary representing the observation. Notes ------- The returned dictionary is not necessarily json serializable. To have a grid2op observation that you can serialize in a json fashion, please use the :func:`grid2op.Space.GridObjects.to_json` function. .. note:: This function is different to the :func:`grid2op.Space.GridObjects.to_dict`. Indeed the dictionnary resulting from this function will count as keys all the attributes in :attr:`GridObjects.attr_list_vect` only. Concretely, if `obs` is an observation (:class:`grid2op.Observation.BaseObservation`) then `obs.to_dict()` will have the keys `type(obs).attr_list_vect` and the values will be numpy arrays whereas `obs.to_json()` will have the keys `type(obs).attr_list_vect` and `type(obs).attr_list_json` and the values will be lists (serializable). """ if self._dictionnarized is None: self._dictionnarized = {} self._dictionnarized["timestep_overflow"] = self.timestep_overflow self._dictionnarized["line_status"] = self.line_status self._dictionnarized["topo_vect"] = self.topo_vect self._dictionnarized["loads"] = {} self._dictionnarized["loads"]["p"] = self.load_p self._dictionnarized["loads"]["q"] = self.load_q self._dictionnarized["loads"]["v"] = self.load_v self._dictionnarized[ "prods" ] = {} # TODO will be removed in future versions self._dictionnarized["prods"][ "p" ] = self.gen_p # TODO will be removed in future versions self._dictionnarized["prods"][ "q" ] = self.gen_q # TODO will be removed in future versions self._dictionnarized["prods"][ "v" ] = self.gen_v # TODO will be removed in future versions self._dictionnarized["gens"] = {} self._dictionnarized["gens"]["p"] = self.gen_p self._dictionnarized["gens"]["q"] = self.gen_q self._dictionnarized["gens"]["v"] = self.gen_v self._dictionnarized["lines_or"] = {} self._dictionnarized["lines_or"]["p"] = self.p_or self._dictionnarized["lines_or"]["q"] = self.q_or self._dictionnarized["lines_or"]["v"] = self.v_or self._dictionnarized["lines_or"]["a"] = self.a_or self._dictionnarized["lines_ex"] = {} self._dictionnarized["lines_ex"]["p"] = self.p_ex self._dictionnarized["lines_ex"]["q"] = self.q_ex self._dictionnarized["lines_ex"]["v"] = self.v_ex self._dictionnarized["lines_ex"]["a"] = self.a_ex self._dictionnarized["rho"] = self.rho self._dictionnarized["maintenance"] = {} self._dictionnarized["maintenance"][ "time_next_maintenance" ] = self.time_next_maintenance self._dictionnarized["maintenance"][ "duration_next_maintenance" ] = self.duration_next_maintenance self._dictionnarized["cooldown"] = {} self._dictionnarized["cooldown"]["line"] = self.time_before_cooldown_line self._dictionnarized["cooldown"][ "substation" ] = self.time_before_cooldown_sub self._dictionnarized["redispatching"] = {} self._dictionnarized["redispatching"][ "target_redispatch" ] = self.target_dispatch self._dictionnarized["redispatching"][ "actual_dispatch" ] = self.actual_dispatch # storage self._dictionnarized["storage_charge"] = 1.0 * self.storage_charge self._dictionnarized["storage_power_target"] = ( 1.0 * self.storage_power_target ) self._dictionnarized["storage_power"] = 1.0 * self.storage_power # curtailment self._dictionnarized["gen_p_before_curtail"] = ( 1.0 * self.gen_p_before_curtail ) self._dictionnarized["curtailment"] = 1.0 * self.curtailment self._dictionnarized["curtailment_limit"] = 1.0 * self.curtailment_limit self._dictionnarized["curtailment_limit_effective"] = ( 1.0 * self.curtailment_limit_effective ) # alarm / attention budget self._dictionnarized["is_alarm_illegal"] = self.is_alarm_illegal[0] self._dictionnarized["time_since_last_alarm"] = self.time_since_last_alarm[ 0 ] self._dictionnarized["last_alarm"] = copy.deepcopy(self.last_alarm) self._dictionnarized["attention_budget"] = self.attention_budget[0] self._dictionnarized[ "was_alarm_used_after_game_over" ] = self.was_alarm_used_after_game_over[0] # alert self._dictionnarized["active_alert"] = copy.deepcopy(self.active_alert) self._dictionnarized["attack_under_alert"] = copy.deepcopy(self.attack_under_alert) self._dictionnarized["time_since_last_alert"] = copy.deepcopy(self.time_since_last_alert) self._dictionnarized["alert_duration"] = copy.deepcopy(self.alert_duration) self._dictionnarized["time_since_last_attack"] = copy.deepcopy(self.time_since_last_attack) self._dictionnarized["was_alert_used_after_attack"] = copy.deepcopy(self.was_alert_used_after_attack) self._dictionnarized[ "total_number_of_alert" ] = self.total_number_of_alert[0] if type(self).dim_alerts else [] # current_step / max step self._dictionnarized["current_step"] = self.current_step self._dictionnarized["max_step"] = self.max_step return self._dictionnarized
def _aux_add_act_set_line_status(self, cls, cls_act, act, res, issue_warn): reco_powerline = act.line_set_status if "set_bus" in cls_act.authorized_keys: line_ex_set_bus = act.line_ex_set_bus line_or_set_bus = act.line_or_set_bus else: line_ex_set_bus = np.zeros(cls.n_line, dtype=dt_int) line_or_set_bus = np.zeros(cls.n_line, dtype=dt_int) error_no_bus_set = ( "You reconnected a powerline with your action but did not specify on which bus " "to reconnect both its end. This behaviour, also perfectly fine for an environment " "will not be accurate in the method obs + act. Consult the documentation for more " "information. Problem arose for powerlines with id {}" ) tmp = ( (reco_powerline == 1) & (line_ex_set_bus <= 0) & (res.topo_vect[cls.line_ex_pos_topo_vect] == -1) ) if tmp.any(): id_issue_ex = tmp.nonzero()[0] if issue_warn: warnings.warn(error_no_bus_set.format(id_issue_ex)) if "set_bus" in cls_act.authorized_keys: # assign 1 in the bus in this case act.line_ex_set_bus = [(el, 1) for el in id_issue_ex] tmp = ( (reco_powerline == 1) & (line_or_set_bus <= 0) & (res.topo_vect[cls.line_or_pos_topo_vect] == -1) ) if tmp.any(): id_issue_or = tmp.nonzero()[0] if issue_warn: warnings.warn(error_no_bus_set.format(id_issue_or)) if "set_bus" in cls_act.authorized_keys: # assign 1 in the bus in this case act.line_or_set_bus = [(el, 1) for el in id_issue_or] def _aux_add_act_set_line_status2(self, cls, cls_act, act, res, issue_warn): disco_line = (act.line_set_status == -1) & res.line_status res.topo_vect[cls.line_or_pos_topo_vect[disco_line]] = -1 res.topo_vect[cls.line_ex_pos_topo_vect[disco_line]] = -1 res.line_status[disco_line] = False reco_line = (act.line_set_status >= 1) & (~res.line_status) # i can do that because i already "fixed" the action to have it put 1 in case it # bus were not provided if "set_bus" in cls_act.authorized_keys: # I assign previous bus (because it could have been modified) res.topo_vect[ cls.line_or_pos_topo_vect[reco_line] ] = act.line_or_set_bus[reco_line] res.topo_vect[ cls.line_ex_pos_topo_vect[reco_line] ] = act.line_ex_set_bus[reco_line] else: # I assign one (action do not allow me to modify the bus) res.topo_vect[cls.line_or_pos_topo_vect[reco_line]] = 1 res.topo_vect[cls.line_ex_pos_topo_vect[reco_line]] = 1 res.line_status[reco_line] = True def _aux_add_act_change_line_status2(self, cls, cls_act, act, res, issue_warn): disco_line = act.line_change_status & res.line_status reco_line = act.line_change_status & (~res.line_status) # handle disconnected powerlines res.topo_vect[cls.line_or_pos_topo_vect[disco_line]] = -1 res.topo_vect[cls.line_ex_pos_topo_vect[disco_line]] = -1 res.line_status[disco_line] = False # handle reconnected powerlines if reco_line.any(): if "set_bus" in cls_act.authorized_keys: line_ex_set_bus = 1 * act.line_ex_set_bus line_or_set_bus = 1 * act.line_or_set_bus else: line_ex_set_bus = np.zeros(cls.n_line, dtype=dt_int) line_or_set_bus = np.zeros(cls.n_line, dtype=dt_int) if issue_warn and ( (line_or_set_bus[reco_line] == 0).any() or (line_ex_set_bus[reco_line] == 0).any() ): warnings.warn( 'A powerline has been reconnected with a "change_status" action without ' "specifying on which bus it was supposed to be reconnected. This is " "perfectly fine in regular grid2op environment, but this behaviour " "cannot be properly implemented with the only information in the " "observation. Please see the documentation for more information." ) line_or_set_bus[reco_line & (line_or_set_bus == 0)] = 1 line_ex_set_bus[reco_line & (line_ex_set_bus == 0)] = 1 res.topo_vect[cls.line_or_pos_topo_vect[reco_line]] = line_or_set_bus[ reco_line ] res.topo_vect[cls.line_ex_pos_topo_vect[reco_line]] = line_ex_set_bus[ reco_line ] res.line_status[reco_line] = True
[docs] def add_act(self, act : "grid2op.Action.BaseAction", issue_warn=True) -> Self: """ Easier access to the impact on the observation if an action were applied. This is for now only useful to get a topology in which the grid would be without doing an expensive `obs.simuulate` Notes ----- This will not give the real topology of the grid in all cases for many reasons amongst: 1) past topologies are not known by the observation. If you reconnect a powerline in the action without having specified on which bus, it has no way to know (but the environment does!) on which bus it should be reconnected (which is the last known bus) 2) some "protections" are emulated in the environment. This means that the environment can disconnect some powerline under certain conditions. This is absolutely not taken into account here. 3) the environment is stochastic, for example there can be maintenance or attacks (hazards) and the generators and loads change each step. This is not taken into account in this function. 4) no checks are performed to see if the action meets the rules of the game (number of elements you can modify in the action, cooldowns etc.) This method **supposes** that the action is legal and non ambiguous. 5) It do not check for possible "game over", for example due to isolated elements or non-connected grid (grid with 2 or more connex components) If these issues are important for you, you will need to use the :func:`grid2op.Observation.BaseObservation.simulate` method. It can be used like `obs.simulate(act, time_step=0)` but it is much more expensive. Parameters ---------- act: :class:`grid2op.Action.BaseAction` The action you want to add to the observation issue_warn: ``bool`` Issue a warning when this method might not compute the proper resulting topologies. Default to ``True``: it issues warning when something not supported is done in the action. Returns ------- res: :class:`grid2op.Observation.BaseObservation` The resulting observation. Note that this observation is not initialized with everything. It is only relevant when you want to study the resulting topology after you applied an action. Lots of `res` attributes are empty. Examples -------- You can use it this way, for example if you want to retrieve the topology you would get (see the restriction in the above description) after applying an action: .. code-block:: python import grid2op # create the environment env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) # generate the first observation obs = env.reset() # make some action act = ... # see the dedicated page # have a look at the impact on the action on the topology partial_obs = obs + act # or `partial_obs = obs.add_act(act, issue_warn=False)` if you want to silence the warnings # and now you can inspect the topology with any method you want: partial_obs.topo_vect partial_obs.load_bus bus_mat = partial_obs.bus_connectivity_matrix() # or even elem_mat = partial_obs.connectivity_matrix() # but you cannot use partial_obs.prod_p # or partial_obs.load_q etc. """ from grid2op.Action import BaseAction if not isinstance(act, BaseAction): raise RuntimeError("You can only add actions to observation at the moment") cls = type(self) cls_act = type(act) act = copy.deepcopy(act) res = cls() res.set_game_over(env=None) res.topo_vect[:] = self.topo_vect res.line_status[:] = self.line_status ambiguous, except_tmp = act.is_ambiguous() if ambiguous: raise RuntimeError( f"Impossible to add an ambiguous action to an observation. Your action was " f'ambiguous because: "{except_tmp}"' ) # if a powerline has been reconnected without specific bus, i issue a warning if "set_line_status" in cls_act.authorized_keys: self._aux_add_act_set_line_status(cls, cls_act, act, res, issue_warn) # topo vect if "set_bus" in cls_act.authorized_keys: res.topo_vect[act.set_bus != 0] = act.set_bus[act.set_bus != 0] if "change_bus" in cls_act.authorized_keys: do_change_bus_on = act.change_bus & ( res.topo_vect > 0 ) # change bus of elements that were on res.topo_vect[do_change_bus_on] = 3 - res.topo_vect[do_change_bus_on] # topo vect: reco of powerline that should be res.line_status = (res.topo_vect[cls.line_or_pos_topo_vect] >= 1) & ( res.topo_vect[cls.line_ex_pos_topo_vect] >= 1 ) # powerline status if "set_line_status" in cls_act.authorized_keys: self._aux_add_act_set_line_status2(cls, cls_act, act, res, issue_warn) if "change_line_status" in cls_act.authorized_keys: self._aux_add_act_change_line_status2(cls, cls_act, act, res, issue_warn) if "redispatch" in cls_act.authorized_keys: redisp = act.redispatch if (np.abs(redisp) >= 1e-7).any() and issue_warn: warnings.warn( "You did redispatching on this action. Redispatching is heavily transformed " "by the environment (consult the documentation about the modeling of the " "generators for example) so we will not even try to mimic this here." ) if "set_storage" in cls_act.authorized_keys: storage_p = act.storage_p if (np.abs(storage_p) >= 1e-7).any() and issue_warn: warnings.warn( "You did action on storage units in this action. This implies performing some " "redispatching which is heavily transformed " "by the environment (consult the documentation about the modeling of the " "generators for example) so we will not even try to mimic this here." ) if "curtail" in cls_act.authorized_keys: curt = act.curtail if (np.abs(curt + 1) >= 1e-7).any() and issue_warn: # curtail == -1. warnings.warn( "You did action on storage units in this action. This implies performing some " "redispatching which is heavily transformed " "by the environment (consult the documentation about the modeling of the " "generators for example) so we will not even try to mimic this here." ) return res
def __add__(self, act: "grid2op.Action.BaseAction") -> Self: from grid2op.Action import BaseAction if isinstance(act, BaseAction): return self.add_act(act, issue_warn=True) raise Grid2OpException( "Only grid2op action can be added to grid2op observation at the moment." ) @property def thermal_limit(self) -> np.ndarray: """ Return the thermal limit of the powergrid, given in Amps (A) Examples -------- .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() thermal_limit = obs.thermal_limit """ res = 1.0 * self._thermal_limit res.flags.writeable = False return res @property def curtailment_mw(self) -> np.ndarray: """ return the curtailment, expressed in MW rather than in ratio of pmax. Examples -------- .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() curtailment_mw = obs.curtailment_mw """ return self.curtailment * self.gen_pmax @property def curtailment_limit_mw(self) -> np.ndarray: """ return the limit of production of a generator in MW rather in ratio Examples -------- .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() curtailment_limit_mw = obs.curtailment_limit_mw """ return self.curtailment_limit * self.gen_pmax def _update_attr_backend(self, backend: "grid2op.Backend.Backend") -> None: """This function updates the attribute of the observation that depends only on the backend. Parameters ---------- backend : The backend from which to update the observation """ cls = type(self) self.line_status[:] = backend.get_line_status() self.topo_vect[:] = backend.get_topo_vect() # get the values related to continuous values self.gen_p[:], self.gen_q[:], self.gen_v[:] = backend.generators_info() self.load_p[:], self.load_q[:], self.load_v[:] = backend.loads_info() self.p_or[:], self.q_or[:], self.v_or[:], self.a_or[:] = backend.lines_or_info() self.p_ex[:], self.q_ex[:], self.v_ex[:], self.a_ex[:] = backend.lines_ex_info() self.rho[:] = backend.get_relative_flow().astype(dt_float) # margin up and down if cls.redispatching_unit_commitment_availble: self.gen_margin_up[:] = np.minimum( cls.gen_pmax - self.gen_p, self.gen_max_ramp_up ) self.gen_margin_up[cls.gen_renewable] = 0.0 self.gen_margin_down[:] = np.minimum( self.gen_p - cls.gen_pmin, self.gen_max_ramp_down ) self.gen_margin_down[cls.gen_renewable] = 0.0 # because of the slack, sometimes it's negative... # see https://github.com/rte-france/Grid2Op/issues/313 self.gen_margin_up[self.gen_margin_up < 0.] = 0. self.gen_margin_down[self.gen_margin_down < 0.] = 0. else: self.gen_margin_up[:] = 0.0 self.gen_margin_down[:] = 0.0 # handle shunts (if avaialble) if cls.shunts_data_available: sh_p, sh_q, sh_v, sh_bus = backend.shunt_info() self._shunt_p[:] = sh_p self._shunt_q[:] = sh_q self._shunt_v[:] = sh_v self._shunt_bus[:] = sh_bus if backend.can_output_theta: self.support_theta = True # backend supports the computation of theta ( self.theta_or[:], self.theta_ex[:], self.load_theta[:], self.gen_theta[:], self.storage_theta[:], ) = backend.get_theta() else: # theta will be always 0. by convention self.theta_or[:] = 0. self.theta_ex[:] = 0. self.load_theta[:] = 0. self.gen_theta[:] = 0. self.storage_theta[:] = 0. def _update_internal_env_params(self, env: "grid2op.Environment.BaseEnv"): # this is only done if the env supports forecast # some parameters used for the "forecast env" # but not directly accessible in the observation self._env_internal_params = { "_storage_previous_charge": 1.0 * env._storage_previous_charge, "_amount_storage": 1.0 * env._amount_storage, "_amount_storage_prev": 1.0 * env._amount_storage_prev, "_sum_curtailment_mw": 1.0 * env._sum_curtailment_mw, "_sum_curtailment_mw_prev": 1.0 * env._sum_curtailment_mw_prev, "_line_status_env": env.get_current_line_status().astype(dt_int), # false -> 0 true -> 1 "_gen_activeprod_t": 1.0 * env._gen_activeprod_t, "_gen_activeprod_t_redisp": 1.0 * env._gen_activeprod_t_redisp, "_already_modified_gen": copy.deepcopy(env._already_modified_gen), } self._env_internal_params["_line_status_env"] *= 2 # false -> 0 true -> 2 self._env_internal_params["_line_status_env"] -= 1 # false -> -1; true -> 1 if env._has_attention_budget: self._env_internal_params["_attention_budget_state"] = env._attention_budget.get_state() # # TODO this looks suspicious ! # (self._env_internal_params["opp_space_state"], # self._env_internal_params["opp_state"]) = env._oppSpace._get_state() def _update_obs_complete(self, env: "grid2op.Environment.BaseEnv", with_forecast:bool=True): """ update all the observation attributes as if it was a complete, fully observable and without noise observation """ self._is_done = False # counter self.current_step = dt_int(env.nb_time_step) self.max_step = dt_int(env.max_episode_duration()) # extract the time stamps self.year = dt_int(env.time_stamp.year) self.month = dt_int(env.time_stamp.month) self.day = dt_int(env.time_stamp.day) self.hour_of_day = dt_int(env.time_stamp.hour) self.minute_of_hour = dt_int(env.time_stamp.minute) self.day_of_week = dt_int(env.time_stamp.weekday()) # get the values related to topology self.timestep_overflow[:] = env._timestep_overflow # attribute that depends only on the backend state self._update_attr_backend(env.backend) # storage units self.storage_charge[:] = env._storage_current_charge self.storage_power_target[:] = env._action_storage self.storage_power[:] = env._storage_power # cool down and reconnection time after hard overflow, soft overflow or cascading failure self.time_before_cooldown_line[:] = env._times_before_line_status_actionable self.time_before_cooldown_sub[:] = env._times_before_topology_actionable self.time_next_maintenance[:] = env._time_next_maintenance self.duration_next_maintenance[:] = env._duration_next_maintenance # redispatching self.target_dispatch[:] = env._target_dispatch self.actual_dispatch[:] = env._actual_dispatch self._thermal_limit[:] = env.get_thermal_limit() if self.redispatching_unit_commitment_availble: self.gen_p_before_curtail[:] = env._gen_before_curtailment self.curtailment[:] = ( self.gen_p_before_curtail - self.gen_p ) / self.gen_pmax self.curtailment[~self.gen_renewable] = 0.0 self.curtailment_limit[:] = env._limit_curtailment self.curtailment_limit[self.curtailment_limit >= 1.0] = 1.0 gen_curtailed = self.gen_renewable is_acted = (self.gen_p_before_curtail != self.gen_p) self.curtailment_limit_effective[gen_curtailed & is_acted] = ( self.gen_p[gen_curtailed & is_acted] / self.gen_pmax[gen_curtailed & is_acted] ) self.curtailment_limit_effective[gen_curtailed & ~is_acted] = ( self.curtailment_limit[gen_curtailed & ~is_acted] ) self.curtailment_limit_effective[~gen_curtailed] = 1.0 else: self.curtailment[:] = 0.0 self.gen_p_before_curtail[:] = self.gen_p self.curtailment_limit[:] = 1.0 self.curtailment_limit_effective[:] = 1.0 self.delta_time = dt_float(1.0 * env.delta_time_seconds / 60.0) # handles forecasts here self._update_forecast(env, with_forecast) # handle alarms self._update_alarm(env) # handle alerts self._update_alert(env) def _update_forecast(self, env: "grid2op.Environment.BaseEnv", with_forecast: bool) -> None: if not with_forecast: return inj_action = {} dict_ = {} dict_["load_p"] = dt_float(1.0 * self.load_p) dict_["load_q"] = dt_float(1.0 * self.load_q) dict_["prod_p"] = dt_float(1.0 * self.gen_p) dict_["prod_v"] = dt_float(1.0 * self.gen_v) inj_action["injection"] = dict_ # inj_action = self.action_helper(inj_action) timestamp = self.get_time_stamp() self._forecasted_inj = [(timestamp, inj_action)] self._forecasted_inj += env.forecasts() self._forecasted_grid = [None for _ in self._forecasted_inj] self._env_internal_params = {} self._update_internal_env_params(env) def _update_alarm(self, env: "grid2op.Environment.BaseEnv"): if not (self.dim_alarms and env._has_attention_budget): return self.is_alarm_illegal[:] = env._is_alarm_illegal if env._attention_budget.time_last_successful_alarm_raised > 0: self.time_since_last_alarm[:] = ( self.current_step - env._attention_budget.time_last_successful_alarm_raised ) else: self.time_since_last_alarm[:] = -1 self.last_alarm[:] = env._attention_budget.last_successful_alarm_raised self.attention_budget[:] = env._attention_budget.current_budget def _update_alert(self, env: "grid2op.Environment.BaseEnv"): self.active_alert[:] = env._last_alert self.time_since_last_alert[:] = env._time_since_last_alert self.alert_duration[:] = env._alert_duration self.total_number_of_alert[:] = env._total_number_of_alert self.time_since_last_attack[:] = env._time_since_last_attack self.attack_under_alert[:] = env._attack_under_alert # self.was_alert_used_after_attack # handled in self.update_after_reward
[docs] def get_simulator(self) -> "grid2op.simulator.Simulator": """This function allows to retrieve a valid and properly initialized "Simulator" A :class:`grid2op.simulator.Simulator` can be used to simulate the impact of multiple consecutive actions, without taking into account any kind of rules. It can also be use with forecast of the productions / consumption to predict whether or not a given state is "robust" to variation of the injections for example. You can find more information about simulator on the dedicated page of the documentation :ref:`simulator_page`. TODO Basic usage are: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() simulator = obs.get_simulator() Please consult the page :ref:`simulator_page` for more information about how to use them. .. seealso:: :ref:`model_based_rl` """ # BaseObservation is only used for typing in the simulator... if self._obs_env is None: raise BaseObservationError( "Impossible to build a simulator is the " "observation space does not support it. This can be the case if the " "observation is loaded from disk or if the backend cannot be copied " "for example." ) if not self._obs_env.is_valid(): raise BaseObservationError("Impossible to use a Simulator backend with an " "environment that cannot be copied (most " "liekly due to the backend that cannot be " "copied).") from grid2op.simulator import ( Simulator, ) # lazy import to prevent circular references nb_highres_called = self._obs_env.highres_sim_counter.nb_highres_called res = Simulator(backend=self._obs_env.backend, _highres_sim_counter=self._obs_env._highres_sim_counter) res.set_state(self) # it does one simulation when it inits it (calling env.step) so I remove 1 here self._obs_env.highres_sim_counter._HighResSimCounter__nb_highres_called = nb_highres_called return res
def _get_array_from_forecast(self, name: str) -> np.ndarray: if len(self._forecasted_inj) <= 1: # self._forecasted_inj already embed the current step raise NoForecastAvailable("It appears this environment does not support any forecast at all.") nb_h = len(self._forecasted_inj) nb_el = self._forecasted_inj[0][1]['injection'][name].shape[0] prev = 1.0 * self._forecasted_inj[0][1]['injection'][name] res = np.zeros((nb_h, nb_el)) for h in range(nb_h): dict_tmp = self._forecasted_inj[h][1]['injection'] if name in dict_tmp: this_row = 1.0 * dict_tmp[name] prev = 1.0 * this_row else: this_row = 1.0 * prev res[h,:] = this_row return res def _generate_forecasted_maintenance_for_simenv(self, nb_h: int) -> np.ndarray: n_line = type(self).n_line res = np.full((nb_h, n_line), fill_value=False, dtype=dt_bool) for l_id in range(n_line): tnm = self.time_next_maintenance[l_id] if tnm != -1: dnm = self.duration_next_maintenance[l_id] res[tnm:(tnm+dnm),l_id] = True return res
[docs] def get_forecast_env(self) -> "grid2op.Environment.Environment": """ .. versionadded:: 1.9.0 This function will return a grid2op "environment" where the data (load, generation and maintenance) comes from the forecast data in the observation. This "forecasted environment" can be used like any grid2op environment. It checks the same "rules" as the :func:`BaseObservation.simulate` (if you want to change them, make sure to use :func:`grid2op.Environment.BaseEnv.change_forecast_parameters` or :func:`BaseObservation.change_forecast_parameters`), with the exact same behaviour as "env.step(...)". With this function, your agent can now make some predictions about the future. This can be particularly useful for model based RL for example. .. seealso:: :func:`BaseObservation.simulate` and :func:`BaseObservation.get_env_from_external_forecasts` .. seealso:: :ref:`model_based_rl` Examples -------- A typical use might look like .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() # and now retrieve the "forecasted_env" forcast_env = obs.get_forecast_env() # when reset this should be at the same "step" as the action forecast_obs = forcast_env.reset() # forecast_obs == obs # should be True done = False while not done: next_forecast_obs, reward, done, info = forcast_env.step(env.action_space()) .. note:: The code above is closely related to the :func:`BaseObservation.simulate` and a very similar result (up to some corner cases beyond the scope of this documentation) can be obtained with: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() forecast_env = obs.get_forecast_env() f_obs = forecast_env.reset() act_1 = ... # a grid2op action f_obs_1, *_ = forecast_env.step(act_1) sim_obs_1, *_ = obs.simulate(act_1) # f_obs_1 should be sim_obs_1 act_2 = ... # a grid2op action f_obs_2, *_ = forecast_env.step(act_2) sim_obs_2, *_ = sim_obs_1.simulate(act_2) # f_obs_2 should be sim_obs_2 act_3 = ... # a grid2op action f_obs_3, *_ = forecast_env.step(act_3) sim_obs_3, *_ = sim_obs_2.simulate(act_3) # f_obs_3 should be sim_obs_3 .. danger:: Long story short, once a environment (and a forecast_env is one) is deleted, you cannot use anything it "holds" including, but not limited to the capacity to perform `obs.simulate(...)` even if the `obs` is still referenced. See :ref:`danger-env-ownership` (first danger block). This caused issue https://github.com/rte-france/Grid2Op/issues/568 for example. Returns ------- grid2op.Environment.Environment The "forecasted environment" that is a grid2op environment with the data corresponding to the forecast made at the time of the observation. Raises ------ BaseObservationError When no forecast are available, for example. """ if not self._ptr_kwargs_env: raise BaseObservationError("Cannot build a environment with the forecast " "data as this Observation does not appear to " "support forecast.") # build the forecast load_p = self._get_array_from_forecast("load_p") load_q = self._get_array_from_forecast("load_q") prod_p = self._get_array_from_forecast("prod_p") prod_v = self._get_array_from_forecast("prod_v") maintenance = self._generate_forecasted_maintenance_for_simenv(prod_v.shape[0]) return self._make_env_from_arays(load_p, load_q, prod_p, prod_v, maintenance)
[docs] def get_forecast_arrays(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ This functions allows to retrieve (as numpy arrays) the values for all the loads / generators / maintenance for the forseable future (they are the forecast availble in :func:`BaseObservation.simulate` and :func:`BaseObservation.get_forecast_env`) .. versionadded:: 1.9.0 Examples ----------- .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() load_p, load_q, prod_p, prod_v, maintenance = obs.get_forecast_arrays() """ load_p = self._get_array_from_forecast("load_p") load_q = self._get_array_from_forecast("load_q") prod_p = self._get_array_from_forecast("prod_p") prod_v = self._get_array_from_forecast("prod_v") maintenance = self._generate_forecasted_maintenance_for_simenv(prod_v.shape[0]) return load_p, load_q, prod_p, prod_v, maintenance
def _aux_aux_get_nb_ts(self, res, array) -> int: if res == 0 and array is not None: # first non empty array return array.shape[0] if res > 0 and array is not None: # an array is provided with a shape # and there is another array # I check both shape match if array.shape[0] != res: raise BaseObservationError("Shape mismatch between some of the input arrays") return res # now array is None, so I return res anyway (size not changed) return res def _aux_get_nb_ts(self, load_p: Optional[np.ndarray] = None, load_q: Optional[np.ndarray] = None, gen_p: Optional[np.ndarray] = None, gen_v: Optional[np.ndarray] = None, ) -> int: res = 0 for arr in [load_p, load_q, gen_p, gen_v]: res = self._aux_aux_get_nb_ts(res, arr) return res
[docs] def get_env_from_external_forecasts(self, load_p: Optional[np.ndarray] = None, load_q: Optional[np.ndarray] = None, gen_p: Optional[np.ndarray] = None, gen_v: Optional[np.ndarray] = None, with_maintenance: bool= False, ) -> "grid2op.Environment.Environment": """ .. versionadded:: 1.9.0 This function will return a grid2op "environment" where the data (load, generation and maintenance) comes from the provided forecast data. This "forecasted environment" can be used like any grid2op environment. It checks the same "rules" as the :func:`BaseObservation.simulate` (if you want to change them, make sure to use :func:`grid2op.Environment.BaseEnv.change_forecast_parameters` or :func:`BaseObservation.change_forecast_parameters`), with the exact same behaviour as "env.step(...)". This can be particularly useful for model based RL for example. Data should be: - `load_p` a numpy array of float32 (or convertible to it) with n_rows and n_load columns representing the load active values in MW. - `load_q` a numpy array of float32 (or convertible to it) with n_rows and n_load columns representing the load reactive values in MVAr. - `gen_p` a numpy array of float32 (or convertible to it) with n_rows and n_gen columns representing the generation active values in MW. - `gen_v` a numpy array of float32 (or convertible to it) with n_rows and n_gen columns representing the voltage magnitude setpoint in kV. All arrays are optional. If nothing is provided for a given array then it's replaced by the value in the observation. For example, if you do not provided the `gen_p` value then `obs.gen_p` is used. All provided arrays should have the same number of rows. .. note:: Maintenance will be added from the information of the observation. If you don't want to add maintenance, you can passe the kwarg `with_maintenance=False` .. seealso:: :func:`BaseObservation.simulate` and :func:`BaseObservation.get_forecast_env` .. seealso:: :ref:`model_based_rl` .. note:: With this method, you can have as many "steps" in the forecasted environment as you want. You are not limited with the amount of data provided: if you send data with 10 rows, you have 10 steps. If you have 100 rows then you have 100 steps. .. warning:: We remind that, if you provide some forecasts, it is expected that they allow some powerflow to converge. The balance between total generation on one side and total demand and losses on the other should also make "as close as possible" to reduce some modeling artifact (by the backend, grid2op does not check anything here). Finally, make sure that your input data meet the constraints on the generators (pmin, pmax and ramps) otherwise you might end up with incorrect behaviour. Grid2op supposes that data fed to it is consistent with its model. If not it's "undefined behaviour". .. danger:: Long story short, once a environment (and a forecast_env is one) is deleted, you cannot use anything it "holds" including, but not limited to the capacity to perform `obs.simulate(...)` even if the `obs` is still referenced. See :ref:`danger-env-ownership` (first danger block). This caused issue https://github.com/rte-france/Grid2Op/issues/568 for example. Examples -------- A typical use might look like .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() # make some "forecast" with the method of your choice load_p_forecasted = ... load_q_forecasted = ... gen_p_forecasted = ... gen_v_forecasted = ... # and now retrieve the associated "forecasted_env" forcast_env = obs.get_env_from_external_forecasts(load_p_forecasted, load_q_forecasted, gen_p_forecasted, gen_v_forecasted) # when reset this should be at the same "step" as the action forecast_obs = forcast_env.reset() # forecast_obs == obs # should be True done = False while not done: next_forecast_obs, reward, done, info = forcast_env.step(env.action_space()) Returns ------- grid2op.Environment.Environment The "forecasted environment" that is a grid2op environment with the data corresponding to the forecasts provided as input. """ nb_ts = self._aux_get_nb_ts(load_p, load_q, gen_p, gen_v) + 1 if load_p is not None: load_p_this = np.concatenate((self.load_p.reshape(1, -1), load_p.astype(dt_float))) else: load_p_this = np.tile(self.load_p, nb_ts).reshape(nb_ts, -1) if load_q is not None: load_q_this = np.concatenate((self.load_q.reshape(1, -1), load_q.astype(dt_float))) else: load_q_this = np.tile(self.load_q, nb_ts).reshape(nb_ts, -1) if gen_p is not None: gen_p_this = np.concatenate((self.gen_p.reshape(1, -1), gen_p.astype(dt_float))) else: gen_p_this = np.tile(self.gen_p, nb_ts).reshape(nb_ts, -1) if gen_v is not None: gen_v_this = np.concatenate((self.gen_v.reshape(1, -1), gen_v.astype(dt_float))) else: gen_v_this = np.tile(self.gen_v, nb_ts).reshape(nb_ts, -1) if with_maintenance: maintenance = self._generate_forecasted_maintenance_for_simenv(nb_ts) else: maintenance = None return self._make_env_from_arays(load_p_this, load_q_this, gen_p_this, gen_v_this, maintenance)
def _make_env_from_arays(self, load_p: np.ndarray, load_q: np.ndarray, prod_p: np.ndarray, prod_v: Optional[np.ndarray] = None, maintenance: Optional[np.ndarray] = None): from grid2op.Chronics import FromNPY, ChronicsHandler from grid2op.Environment._forecast_env import _ForecastEnv ch = ChronicsHandler(FromNPY, load_p=load_p, load_q=load_q, prod_p=prod_p, prod_v=prod_v, maintenance=maintenance) ch.max_iter = ch.real_data.max_iter backend = self._obs_env.backend.copy() backend._is_loaded = True nb_highres_called = self._obs_env.highres_sim_counter.nb_highres_called res = _ForecastEnv(**self._ptr_kwargs_env, backend=backend, chronics_handler=ch, parameters=self._obs_env.parameters, _init_obs=self, highres_sim_counter=self._obs_env.highres_sim_counter ) # it does one simulation when it inits it (calling env.step) so I remove 1 here res.highres_sim_counter._HighResSimCounter__nb_highres_called = nb_highres_called return res
[docs] def change_forecast_parameters(self, params: "grid2op.Parameters.Parameters") -> None: """This function allows to change the parameters (see :class:`grid2op.Parameters.Parameters` for more information) that are used for the `obs.simulate()` and `obs.get_forecast_env()` method. .. danger:: This function has a global impact. It changes the parameters for all sucessive calls to :func:`BaseObservation.simulate` and :func:`BaseObservation.get_forecast_env` ! .. seealso:: :func:`grid2op.Environment.BaseEnv.change_parameters` to change the parameters of the environment of :func:`grid2op.Environment.BaseEnv.change_forecast_parameters` to change the paremters used for the `obs.simulate` and `obs.get_forecast_env` functions. The main advantages of this function is that you do not require to have access to an environment to change them. .. versionadded:: 1.9.0 Examples ----------- .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other name env = grid2op.make(env_name) obs = env.reset() new_params = env.parameters new_params.NO_OVERFLOW_DISCONNECTION = True obs.change_forecast_parameters(new_params) obs.simulate(...) # uses the parameters `new_params` f_env = obs.get_forecast_env() # uses also the parameters `new_params` """ self._obs_env.change_parameters(params) self._obs_env._parameters = params
[docs] def update_after_reward(self, env: "grid2op.Environment.BaseEnv") -> None: """Only called for the regular environment (so not available for :func:`BaseObservation.get_forecast_env` or :func:`BaseObservation.simulate`) .. warning:: You probably don't have to use except if you develop a specific observation class ! .. note:: If you want to develop a new type of observation with a new type of reward, you can use the `env._reward_to_obs` attribute (dictionary) in the reward to pass information to the observation (in this function). Basically, update `env._reward_to_obs` in the reward, and use the values in `env._reward_to_obs` in this function. .. versionadded:: 1.9.1 Parameters ---------- env : grid2op.Environment.BaseEnv The environment with which to update the observation """ if type(self).dim_alerts == 0: return # update the was_alert_used_after_attack ! self.was_alert_used_after_attack[:] = env._was_alert_used_after_attack
[docs] def get_back_to_ref_state( self, storage_setpoint: float=0.5, precision: int=5, ) -> Dict[Literal["powerline", "substation", "redispatching", "storage", "curtailment"], List["grid2op.Action.BaseAction"]]: """ Allows to retrieve the list of actions that needs to be performed to get back the grid in the "reference" state (all elements connected to busbar 1, no redispatching, no curtailment) .. versionadded:: 1.10.0 This function uses the method of the underlying action_space used for the forecasts. See :func:`grid2op.Action.SerializableActionSpace.get_back_to_ref_state` for more information. Examples -------- You can use it like this: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" env = grid2op.make(env_name) obs = env.reset(seed=1) # perform a random action obs, reward, done, info = env.step(env.action_space.sample()) assert not done # you might end up in a "done" state depending on the random action acts = obs.get_back_to_ref_state() print(acts) """ if self.action_helper is None: raise Grid2OpException("Trying to use this function when no action space is " "is available.") if self._is_done: raise Grid2OpException("Cannot use this function in a 'done' state.") return self.action_helper.get_back_to_ref_state(self, storage_setpoint, precision)