Source code for grid2op.Environment.timedOutEnv

# Copyright (c) 2023, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.

import time
from math import floor
from typing import Any, Dict, Tuple, Union, List, Literal
import os

from grid2op.Environment.environment import Environment
from grid2op.Action import BaseAction
from grid2op.Observation import BaseObservation
from grid2op.Exceptions import EnvError
from grid2op.Space import DEFAULT_N_BUSBAR_PER_SUB
from grid2op.MakeEnv.PathUtils import USE_CLASS_IN_FILE


[docs]class TimedOutEnvironment(Environment): # TODO heritage ou alors on met un truc de base """This class is the grid2op implementation of a "timed out environment" entity in the RL framework. This class is very similar to the standard environment. They only differ in the behaivour of the `step` function. For more information, see the documentation of :func:`TimedOutEnvironment.step` .. warning:: This class might not behave normally if used with MaskedEnvironment, MultiEnv, MultiMixEnv etc. Attributes ---------- name: ``str`` The name of the environment time_out_ms: ``int`` maximum duration before performing a do_nothing action and updating to the next time_step. action_space: :class:`grid2op.Action.ActionSpace` Another name for :attr:`Environment.helper_action_player` for gym compatibility. observation_space: :class:`grid2op.Observation.ObservationSpace` Another name for :attr:`Environment.helper_observation` for gym compatibility. reward_range: ``(float, float)`` The range of the reward function metadata: ``dict`` For gym compatibility, do not use spec: ``None`` For Gym compatibility, do not use _viewer: ``object`` Used to display the powergrid. Currently properly supported. """ CAN_SKIP_TS = True # some steps can be more than one time steps def __init__(self, grid2op_env: Union[Environment, dict], time_out_ms: int=1e3) -> None: if time_out_ms <= 0.: raise EnvError(f"For TimedOutEnvironment you need to provide " f"a time_out_ms > 0 (currently {time_out_ms})") self.time_out_ms = float(time_out_ms) # in ms self.__last_act_send = time.perf_counter() self.__last_act_received = self.__last_act_send self._nb_dn_last = 0 self._is_init_dn = False if isinstance(grid2op_env, Environment): kwargs = grid2op_env.get_kwargs() if grid2op_env.classes_are_in_files(): # I need to build the classes # first take the "ownership" of the tmp directory kwargs["_local_dir_cls"] = grid2op_env._local_dir_cls grid2op_env._local_dir_cls = None # then generate the proper classes sys_path = os.path.abspath(kwargs["_local_dir_cls"].name) bk_type = type(grid2op_env.backend) self._add_classes_in_files(sys_path, bk_type, grid2op_env.classes_are_in_files()) super().__init__(**kwargs) elif isinstance(grid2op_env, dict): super().__init__(**grid2op_env) else: raise EnvError(f"For TimedOutEnvironment you need to provide " f"either an Environment or a dict " f"for grid2op_env. You provided: {type(grid2op_env)}") self._is_init_dn = True self._res_skipped = [] self._opp_attacks = []
[docs] def step(self, action: BaseAction) -> Tuple[BaseObservation, float, bool, dict]: """This function allows to pass to the next step for the action. Provided the action the agent wants to do, it will perform the action on the grid and resturn the typical "observation, reward, done, info" tuple. Compared to :func:`BaseEnvironment.step` this function will emulate the "time that passes" supposing that the duration between each step should be `time_out_ms`. Indeed, in reality, there is only 5 mins to take an action between two grid states separated from 5 mins. More precisely: If your agent takes less than `time_out_ms` to chose its action then this function behaves normally. If your agent takes between `time_out_ms` and `2 x time_out_ms` to provide an action then a "do nothing" action is performed and then the provided action is performed. If your agent takes between `2 x time_out_ms` and `3 x time_out_ms` to provide an action, then 2 "do nothing" actions are performed before your action. .. note:: It is possible that the environment "fails" before the action of the agent is implemented on the grid. Parameters ---------- action : `grid2op.Action.BaseAction` The action the agent wish to perform. Returns ------- Tuple[BaseObservation, float, bool, dict] _description_ """ self.__last_act_received = time.perf_counter() self._res_skipped = [] self._opp_attacks = [] # do the "do nothing" actions self._nb_dn_last = 0 if self._is_init_dn: nb_dn = floor(1000. * (self.__last_act_received - self.__last_act_send) / (self.time_out_ms)) else: nb_dn = 0 do_nothing_action = self.action_space() for _ in range(nb_dn): obs, reward, done, info = super().step(do_nothing_action) self._nb_dn_last += 1 self._opp_attacks.append(self._oppSpace.last_attack) if done: info["nb_do_nothing"] = nb_dn info["nb_do_nothing_made"] = self._nb_dn_last info["action_performed"] = False info["last_act_received"] = self.__last_act_received info["last_act_send"] = self.__last_act_send return obs, reward, done, info self._res_skipped.append((obs, reward, done, info)) # now do the action obs, reward, done, info = super().step(action) self._opp_attacks.append(self._oppSpace.last_attack) info["nb_do_nothing"] = nb_dn info["nb_do_nothing_made"] = self._nb_dn_last info["action_performed"] = True info["last_act_received"] = self.__last_act_received info["last_act_send"] = self.__last_act_send self.__last_act_send = time.perf_counter() return obs, reward, done, info
def steps(self, action) -> Tuple[List[Tuple[BaseObservation, float, bool, dict]], List[BaseAction]]: tmp = self.step(action) res = [] for el in self._res_skipped: res.append(el) res.append(tmp) return res, self._opp_attacks
[docs] def get_kwargs(self, with_backend=True, with_chronics_handler=True): res = {} res["time_out_ms"] = self.time_out_ms res["grid2op_env"] = super().get_kwargs(with_backend, with_chronics_handler) return res
[docs] def get_params_for_runner(self): res = super().get_params_for_runner() res["envClass"] = TimedOutEnvironment res["other_env_kwargs"] = {"time_out_ms": self.time_out_ms} return res
@classmethod def init_obj_from_kwargs(cls, *, other_env_kwargs, init_env_path, init_grid_path, chronics_handler, backend, parameters, name, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass, voltagecontrolerClass, other_rewards, opponent_space_type, opponent_action_class, opponent_class, opponent_init_budget, opponent_budget_per_ts, opponent_budget_class, opponent_attack_duration, opponent_attack_cooldown, kwargs_opponent, with_forecast, attention_budget_cls, kwargs_attention_budget, has_attention_budget, logger, kwargs_observation, observation_bk_class, observation_bk_kwargs, _raw_backend_class, _read_from_local_dir, _local_dir_cls, _overload_name_multimix, n_busbar=DEFAULT_N_BUSBAR_PER_SUB): grid2op_env={"init_env_path": init_env_path, "init_grid_path": init_grid_path, "chronics_handler": chronics_handler, "backend": backend, "parameters": parameters, "name": name, "names_chronics_to_backend": names_chronics_to_backend, "actionClass": actionClass, "observationClass": observationClass, "rewardClass": rewardClass, "legalActClass": legalActClass, "voltagecontrolerClass": voltagecontrolerClass, "other_rewards": other_rewards, "opponent_space_type": opponent_space_type, "opponent_action_class": opponent_action_class, "opponent_class": opponent_class, "opponent_init_budget": opponent_init_budget, "opponent_budget_per_ts": opponent_budget_per_ts, "opponent_budget_class": opponent_budget_class, "opponent_attack_duration": opponent_attack_duration, "opponent_attack_cooldown": opponent_attack_cooldown, "kwargs_opponent": kwargs_opponent, "with_forecast": with_forecast, "attention_budget_cls": attention_budget_cls, "kwargs_attention_budget": kwargs_attention_budget, "has_attention_budget": has_attention_budget, "logger": logger, "kwargs_observation": kwargs_observation, "observation_bk_class": observation_bk_class, "observation_bk_kwargs": observation_bk_kwargs, "_raw_backend_class": _raw_backend_class, "_read_from_local_dir": _read_from_local_dir, "n_busbar": int(n_busbar), "_local_dir_cls": _local_dir_cls, "_overload_name_multimix": _overload_name_multimix} if not "time_out_ms" in other_env_kwargs: raise EnvError("You cannot make a MaskedEnvironment without providing the list of lines of interest") for el in other_env_kwargs: if el == "time_out_ms": continue warnings.warn(f"kwargs {el} provided to make the environment will be ignored") res = TimedOutEnvironment(grid2op_env, time_out_ms=other_env_kwargs["time_out_ms"]) return res
[docs] def reset(self, *, seed: Union[int, None] = None, options: Union[Dict[Union[str, Literal["time serie id"]], Union[int, str]], None] = None) -> BaseObservation: """Reset the environment. .. seealso:: The doc of :func:`Environment.reset` for more information Returns ------- BaseObservation The first observation of the new episode. """ self.__last_act_send = time.perf_counter() self.__last_act_received = self.__last_act_send self._is_init_dn = False res = super().reset(seed=seed, options=options) self.__last_act_send = time.perf_counter() self._is_init_dn = True return res
def _custom_deepcopy_for_copy(self, new_obj): super()._custom_deepcopy_for_copy(new_obj) new_obj.__last_act_send = time.perf_counter() new_obj.__last_act_received = new_obj.__last_act_send new_obj._is_init_dn = self._is_init_dn new_obj.time_out_ms = self.time_out_ms