# Copyright (c) 2019-2020, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.
import os
import warnings
import numpy as np
import copy
from typing import Any, Dict, Tuple, Union, List, Literal
from grid2op.dtypes import dt_int, dt_float
from grid2op.Space import GridObjects, RandomObject, DEFAULT_N_BUSBAR_PER_SUB
from grid2op.Exceptions import EnvError, Grid2OpException
from grid2op.Observation import BaseObservation
from grid2op.MakeEnv.PathUtils import USE_CLASS_IN_FILE
from grid2op.Environment.baseEnv import BaseEnv
from grid2op.typing_variables import STEP_INFO_TYPING, RESET_OPTIONS_TYPING
[docs]class MultiMixEnvironment(GridObjects, RandomObject):
"""
This class represent a single powergrid configuration,
backed by multiple environments parameters and chronics
It implements most of the :class:`BaseEnv` public interface:
so it can be used as a more classic environment.
MultiMixEnvironment environments behave like a superset of the environment: they
are made of sub environments (called mixes) that are grid2op regular :class:`Environment`.
You might think the MultiMixEnvironment as a dictionary of :class:`Environment` that implements
some of the :class:`BaseEnv` interface such as :func:`BaseEnv.step` or :func:`BaseEnv.reset`.
By default, each time you call the "step" function a different mix is used. Mixes, by default
are looped through always in the same order. You can see the Examples section for information
about control of these
Examples
--------
In this section we present some common use of the MultiMix environment.
**Basic Usage**
You can think of a MultiMixEnvironment as any :class:`Environment`. So this is a perfectly
valid way to use a MultiMix:
.. code-block:: python
import grid2op
from grid2op.Agent import RandomAgent
# we use an example of a multimix dataset attached with grid2op pacakage
multimix_env = grid2op.make("l2rpn_neurips_2020_track2", test=True)
# define an agent like in any environment
agent = RandomAgent(multimix_env.action_space)
# and now you can do the open ai gym loop
NB_EPISODE = 10
for i in range(NB_EPISODE):
obs = multimix_env.reset()
# each time "reset" is called, another mix is used.
reward = multimix_env.reward_range[0]
done = False
while not done:
act = agent.act(obs, reward, done)
obs, reward, done, info = multimix_env.step(act)
**Use each mix one after the other**
In case you want to study each mix independently, you can iterate through the MultiMix
in a pythonic way. This makes it easy to perform, for example, 10 episode for a given mix
before passing to the next one.
.. code-block:: python
import grid2op
from grid2op.Agent import RandomAgent
# we use an example of a multimix dataset attached with grid2op pacakage
multimix_env = grid2op.make("l2rpn_neurips_2020_track2", test=True)
NB_EPISODE = 10
for mix in multimix_env:
# mix is a regular environment, you can do whatever you want with it
# for example
for i in range(NB_EPISODE):
obs = multimix_env.reset()
# each time "reset" is called, another mix is used.
reward = multimix_env.reward_range[0]
done = False
while not done:
act = agent.act(obs, reward, done)
obs, reward, done, info = multimix_env.step(act)
**Selecting a given Mix**
Sometimes it might be interesting to study only a given mix.
For that you can use the `[]` operator to select only a given mix (which is a grid2op environment)
and use it as you would.
This can be done with:
.. code-block:: python
import grid2op
from grid2op.Agent import RandomAgent
# we use an example of a multimix dataset attached with grid2op pacakage
multimix_env = grid2op.make("l2rpn_neurips_2020_track2", test=True)
# define an agent like in any environment
agent = RandomAgent(multimix_env.action_space)
# list all available mixes:
mixes_names = list(multimix_env.keys())
# and now supposes we want to study only the first one
mix = multimix_env[mixes_names[0]]
# and now you can do the open ai gym loop, or anything you want with it
NB_EPISODE = 10
for i in range(NB_EPISODE):
obs = mix.reset()
# each time "reset" is called, another mix is used.
reward = mix.reward_range[0]
done = False
while not done:
act = agent.act(obs, reward, done)
obs, reward, done, info = mix.step(act)
**Using the Runner**
For MultiMixEnvironment using the :class:`grid2op.Runner.Runner` cannot be done in a
straightforward manner. Here we give an example on how to do it.
.. code-block:: python
import os
import grid2op
from grid2op.Agent import RandomAgent
# we use an example of a multimix dataset attached with grid2op pacakage
multimix_env = grid2op.make("l2rpn_neurips_2020_track2", test=True)
# you can use the runner as following
PATH = "PATH/WHERE/YOU/WANT/TO/SAVE/THE/RESULTS"
for mix in multimix_env:
runner = Runner(**mix.get_params_for_runner(), agentClass=RandomAgent)
runner.run(nb_episode=1,
path_save=os.path.join(PATH,mix.name))
"""
KEYS_RESET_OPTIONS = BaseEnv.KEYS_RESET_OPTIONS
def __init__(
self,
envs_dir,
logger=None,
experimental_read_from_local_dir=None,
n_busbar=DEFAULT_N_BUSBAR_PER_SUB,
_add_to_name="", # internal, for test only, do not use !
_compat_glop_version=None, # internal, for test only, do not use !
_test=False,
**kwargs,
):
GridObjects.__init__(self)
RandomObject.__init__(self)
self.current_env = None
self.env_index = None
self.mix_envs = []
self._env_dir = os.path.abspath(envs_dir)
self.__closed = False
self._do_not_erase_local_dir_cls = False
self._local_dir_cls = None
if not os.path.exists(envs_dir):
raise EnvError(f"There is nothing at {envs_dir}")
# Special case handling for backend
# TODO: with backend.copy() instead !
backendClass = None
backend_kwargs = {}
if "backend" in kwargs:
backendClass = type(kwargs["backend"])
if hasattr(kwargs["backend"], "_my_kwargs"):
# was introduced in grid2op 1.7.1
backend_kwargs = kwargs["backend"]._my_kwargs
del kwargs["backend"]
li_mix_nms = [mix_name for mix_name in sorted(os.listdir(envs_dir)) if os.path.isdir(os.path.join(envs_dir, mix_name))]
if not li_mix_nms:
raise EnvError("We did not find any mix in this multi-mix environment.")
# Make sure GridObject class attributes are set from first env
# Should be fine since the grid is the same for all envs
multi_env_name = (None, envs_dir, os.path.basename(os.path.abspath(envs_dir)), _add_to_name)
env_for_init = self._aux_create_a_mix(envs_dir,
li_mix_nms[0],
logger,
backendClass,
backend_kwargs,
_add_to_name,
_compat_glop_version,
n_busbar,
_test,
experimental_read_from_local_dir,
multi_env_name,
kwargs)
cls_res_me = self._aux_add_class_file(env_for_init)
if cls_res_me is not None:
self.__class__ = cls_res_me
else:
self.__class__ = type(self).init_grid(type(env_for_init.backend), _local_dir_cls=env_for_init._local_dir_cls)
self.mix_envs.append(env_for_init)
self._local_dir_cls = env_for_init._local_dir_cls
# TODO reuse same observation_space and action_space in all the envs maybe ?
multi_env_name = (type(env_for_init)._PATH_GRID_CLASSES, *multi_env_name[1:])
try:
for mix_name in li_mix_nms[1:]:
mix_path = os.path.join(envs_dir, mix_name)
if not os.path.isdir(mix_path):
continue
mix = self._aux_create_a_mix(envs_dir,
mix_name,
logger,
backendClass,
backend_kwargs,
_add_to_name,
_compat_glop_version,
n_busbar,
_test,
experimental_read_from_local_dir,
multi_env_name,
kwargs)
self.mix_envs.append(mix)
except Exception as exc_:
err_msg = "MultiMix environment creation failed at the creation of the first mix. Error: {}".format(exc_)
raise EnvError(err_msg) from exc_
if len(self.mix_envs) == 0:
err_msg = "MultiMix envs_dir did not contain any valid env"
raise EnvError(err_msg)
# tell every mix the "MultiMix" is responsible for deleting the
# folder that stores the classes definition
for el in self.mix_envs:
el._do_not_erase_local_dir_cls = True
self.env_index = 0
self.current_env = self.mix_envs[self.env_index]
# legacy behaviour (using experimental_read_from_local_dir kwargs in env.make)
if self._read_from_local_dir is not None:
if os.path.split(self._read_from_local_dir)[1] == "_grid2op_classes":
self._do_not_erase_local_dir_cls = True
else:
self._do_not_erase_local_dir_cls = True
def _aux_aux_add_class_file(self, sys_path, env_for_init):
# used for the old behaviour (setting experimental_read_from_local_dir=True in make)
bk_type = type(env_for_init.backend)
_PATH_GRID_CLASSES = bk_type._PATH_GRID_CLASSES
cls_res_me = None
try:
bk_type._PATH_GRID_CLASSES = None
my_type_tmp = MultiMixEnvironment.init_grid(gridobj=bk_type, _local_dir_cls=None)
txt_, cls_res_me = BaseEnv._aux_gen_classes(my_type_tmp,
sys_path,
_add_class_output=True)
# then add the class to the init file
with open(os.path.join(sys_path, "__init__.py"), "a", encoding="utf-8") as f:
f.write(txt_)
finally:
# make sure to put back the correct _PATH_GRID_CLASSES
bk_type._PATH_GRID_CLASSES = _PATH_GRID_CLASSES
return cls_res_me
def _aux_add_class_file(self, env_for_init):
# used for the "new" bahviour for grid2op make (automatic read from local dir)
if env_for_init.classes_are_in_files() and env_for_init._local_dir_cls is not None:
sys_path = os.path.abspath(env_for_init._local_dir_cls.name)
self._local_dir_cls = env_for_init._local_dir_cls
env_for_init._local_dir_cls = None
# then generate the proper classes
cls_res_me = self._aux_aux_add_class_file(sys_path, env_for_init)
return cls_res_me
return None
def _aux_create_a_mix(self,
envs_dir,
mix_name,
logger,
backendClass,
backend_kwargs,
_add_to_name,
_compat_glop_version,
n_busbar,
_test,
experimental_read_from_local_dir,
multi_env_name,
kwargs
):
# Inline import to prevent cyclical import
from grid2op.MakeEnv.Make import make
this_logger = (
logger.getChild(f"MultiMixEnvironment_{mix_name}")
if logger is not None
else None
)
mix_path = os.path.join(envs_dir, mix_name)
# Special case for backend
if backendClass is not None:
try:
# should pass with grid2op >= 1.7.1
bk = backendClass(**backend_kwargs)
except TypeError as exc_:
# with grid2Op version prior to 1.7.1
# you might have trouble with
# "TypeError: __init__() got an unexpected keyword argument 'can_be_copied'"
msg_ = ("Impossible to create a backend for each mix using the "
"backend key-word arguments. Falling back to creating "
"with no argument at all (default behaviour with grid2op <= 1.7.0).")
warnings.warn(msg_)
bk = backendClass()
mix = make(
mix_path,
backend=bk,
_add_to_name=_add_to_name,
_compat_glop_version=_compat_glop_version,
n_busbar=n_busbar,
test=_test,
logger=this_logger,
experimental_read_from_local_dir=experimental_read_from_local_dir,
_overload_name_multimix=multi_env_name,
**kwargs,
)
else:
mix = make(
mix_path,
n_busbar=n_busbar,
_add_to_name=_add_to_name,
_compat_glop_version=_compat_glop_version,
test=_test,
logger=this_logger,
experimental_read_from_local_dir=experimental_read_from_local_dir,
_overload_name_multimix=multi_env_name,
**kwargs,
)
return mix
[docs] def get_path_env(self):
"""
Get the path that allows to create this environment.
It can be used for example in `grid2op.utils.underlying_statistics` to save the information directly inside
the environment data.
"""
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
return self._env_dir
@property
def current_index(self):
return self.env_index
def __len__(self):
return len(self.mix_envs)
def __iter__(self):
"""
Operator __iter__ overload to make a ``MultiMixEnvironment`` iterable
.. code-block:: python
import grid2op
from grid2op.Environment import MultiMixEnvironment
from grid2op.Runner import Runner
mm_env = MultiMixEnvironment("/path/to/multi/dataset/folder")
for env in mm_env:
run_p = env.get_params_for_runner()
runner = Runner(**run_p)
runner.run(nb_episode=1, max_iter=-1)
"""
self.env_index = 0
return self
def __next__(self):
if self.env_index < len(self.mix_envs):
r = self.mix_envs[self.env_index]
self.env_index = self.env_index + 1
return r
else:
self.env_index = 0
raise StopIteration
def __getattr__(self, name):
# TODO what if name is an integer ? make it possible to loop with integer here
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
return getattr(self.current_env, name)
def keys(self):
for mix in self.mix_envs:
yield mix.multimix_mix_name
def values(self):
for mix in self.mix_envs:
yield mix
def items(self):
for mix in self.mix_envs:
yield mix.multimix_mix_name, mix
def copy(self):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
mix_envs = self.mix_envs
self.mix_envs = None
current_env = self.current_env
self.current_env = None
# do not copy these attributes
_local_dir_cls = self._local_dir_cls
self._local_dir_cls = None
# create the new object and copy the normal attribute
cls = self.__class__
res = cls.__new__(cls)
for k in self.__dict__:
if k == "mix_envs" or k == "current_env":
# this is handled elsewhere
continue
setattr(res, k, copy.deepcopy(getattr(self, k)))
# now deal with the mixes
res.mix_envs = [mix.copy() for mix in mix_envs]
res.current_env = res.mix_envs[res.env_index]
# finally deal with the ownership of the class folder
res._local_dir_cls = _local_dir_cls
res._do_not_erase_local_dir_cls = True
# put back attributes of `self` that have been put aside
self.mix_envs = mix_envs
self.current_env = current_env
self._local_dir_cls = _local_dir_cls
return res
def __getitem__(self, key):
"""
Operator [] overload for accessing underlying mixes by name
.. code-block:: python
import grid2op
from grid2op.Environment import MultiMixEnvironment
mm_env = MultiMixEnvironment("/path/to/multi/dataset/folder")
mix1_env.name = mm_env["mix_1"]
assert mix1_env == "mix_1"
mix2_env.name = mm_env["mix_2"]
assert mix2_env == "mix_2"
"""
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
# Search for key
for mix in self.mix_envs:
if mix.multimix_mix_name == key:
return mix
# Not found by name
raise KeyError
def reset(self,
*,
seed: Union[int, None] = None,
random=False,
options: RESET_OPTIONS_TYPING = None) -> BaseObservation:
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
if options is not None:
for el in options:
if el not in type(self).KEYS_RESET_OPTIONS:
raise EnvError(f"You tried to customize the `reset` call with some "
f"`options` using the key `{el}` which is invalid. "
f"Only keys in {sorted(list(type(self).KEYS_RESET_OPTIONS))} "
f"can be used.")
if random:
self.env_index = self.space_prng.randint(len(self.mix_envs))
else:
self.env_index = (self.env_index + 1) % len(self.mix_envs)
self.current_env = self.mix_envs[self.env_index]
return self.current_env.reset(seed=seed, options=options)
[docs] def seed(self, seed=None):
"""
Set the seed of this :class:`Environment` for a better control
and to ease reproducible experiments.
Parameters
----------
seed: ``int``
The seed to set.
Returns
---------
seeds: ``list``
The seed used to set the prng (pseudo random number generator)
for all environments, and each environment ``tuple`` seeds
"""
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
try:
seed = np.array(seed).astype(dt_int)
except Exception as e:
raise Grid2OpException(
"Cannot to seed with the seed provided."
"Make sure it can be converted to a"
"numpy 32 bits integer."
)
s = super().seed(seed)
seeds = [s]
max_dt_int = np.iinfo(dt_int).max
for env in self.mix_envs:
env_seed = self.space_prng.randint(max_dt_int)
env_seeds = env.seed(env_seed)
seeds.append(env_seeds)
return seeds
def set_chunk_size(self, new_chunk_size):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.set_chunk_size(new_chunk_size)
def set_id(self, id_):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.set_id(id_)
def deactivate_forecast(self):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.deactivate_forecast()
def reactivate_forecast(self):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.reactivate_forecast()
[docs] def set_thermal_limit(self, thermal_limit):
"""
Set the thermal limit effectively.
Will propagate to all underlying mixes
"""
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.set_thermal_limit(thermal_limit)
def __enter__(self):
"""
Support *with-statement* for the environment.
"""
return self
def __exit__(self, *args):
"""
Support *with-statement* for the environment.
"""
self.close()
# propagate exception
return False
def close(self):
if self.__closed:
return
for mix in self.mix_envs:
mix.close()
self.__closed = True
# free the resources (temporary directory)
if self._do_not_erase_local_dir_cls:
# The resources are not held by this env, so
# I do not remove them
# (case for ObsEnv or ForecastedEnv)
return
BaseEnv._aux_close_local_dir_cls(self)
[docs] def attach_layout(self, grid_layout):
if self.__closed:
raise EnvError("This environment is closed, you cannot use it.")
for mix in self.mix_envs:
mix.attach_layout(grid_layout)
def __del__(self):
"""when the environment is garbage collected, free all the memory, including cross reference to itself in the observation space."""
if not self.__closed:
self.close()
def generate_classes(self):
mix_for_classes = self.mix_envs[0]
path_cls = os.path.join(mix_for_classes.get_path_env(), "_grid2op_classes")
if not os.path.exists(path_cls):
try:
os.mkdir(path_cls)
except FileExistsError:
pass
mix_for_classes.generate_classes()
self._aux_aux_add_class_file(path_cls, mix_for_classes)