Source code for grid2op.Chronics.fromNPY

# Copyright (c) 2019-2020, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0.
# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file,
# you can obtain one at http://mozilla.org/MPL/2.0/.
# SPDX-License-Identifier: MPL-2.0
# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems.

from typing import Optional, Union
import numpy as np
import hashlib
from datetime import datetime, timedelta

import grid2op
from grid2op.dtypes import dt_int
from grid2op.Chronics.gridValue import GridValue
from grid2op.Exceptions import ChronicsError


[docs]class FromNPY(GridValue): """ This class allows to generate some chronics compatible with grid2op if the data are provided in numpy format. It also enables the use of the starting the chronics at different time than the original time and to end it before the end of the chronics. It is then much more flexible in its usage than the defaults chronics. But it is also much more error prone. For example, it does not check the order of the loads / generators that you provide. .. warning:: It assume the order of the elements are consistent with the powergrid backend ! It will not attempt to reorder the columns of the dataset .. note:: The effect if "i_start" and "i_end" are persistant. If you set it once, it affects the object even after "env.reset()" is called. If you want to modify them, you need to use the :func:`FromNPY.chronics.change_i_start` and :func:`FromNPY.chronics.change_i_end` methods (and call `env.reset()`!) TODO implement methods to change the loads / production "based on sampling" (online sampling instead of only reading data) TODO implement the possibility to simulate maintenance / hazards "on the fly" TODO implement hazards ! Examples -------- Usage example, for what you don't really have to do: .. code-block:: python import grid2op from grid2op.Chronics import FromNPY # first retrieve the data that you want, the easiest wayt is to create an environment and read the data from it. env_name = "l2rpn_case14_sandbox" # for example env_ref = grid2op.make(env_name) # retrieve the data load_p = 1.0 * env_ref.chronics_handler.real_data.data.load_p load_q = 1.0 * env_ref.chronics_handler.real_data.data.load_q prod_p = 1.0 * env_ref.chronics_handler.real_data.data.prod_p prod_v = 1.0 * env_ref.chronics_handler.real_data.data.prod_v # now create an environment with these chronics: env = grid2op.make(env_name, chronics_class=FromNPY, data_feeding_kwargs={"i_start": 5, # start at the "step" 5 NB first step is first observation, available with `obs = env.reset()` "i_end": 18, # end index: data after that will not be considered (excluded as per python convention) "load_p": load_p, "load_q": load_q, "prod_p": prod_p, "prod_v": prod_v # other parameters includes # maintenance # load_p_forecast # load_q_forecast # prod_p_forecast # prod_v_forecast }) # you can use env normally, including in runners obs = env.reset() # obs.load_p is load_p[5] (because you set "i_start" = 5, by default it's 0) You can, after creation, change the data with: .. code-block:: python # create env as above # retrieve some new values that you would like new_load_p = ... new_load_q = ... new_prod_p = ... new_prod_v = ... # change the values env.chronics_handler.real_data.change_chronics(new_load_p, new_load_q, new_prod_p, new_prod_v) obs = env.reset() # mandatory if you want the change to be taken into account # obs.load_p is new_load_p[5] (or rather load_p[env.chronics_handler.real_data._i_start]) .. seealso:: More usage examples in: - :func:`FromNPY.change_chronics` - :func:`FromNPY.change_forecasts` - :func:`FromNPY.change_i_start` - :func:`FromNPY.change_i_end` Attributes ---------- TODO """ def __init__( self, load_p: np.ndarray, load_q: np.ndarray, prod_p: np.ndarray, prod_v: Optional[np.ndarray] = None, hazards: Optional[np.ndarray] = None, maintenance: Optional[np.ndarray] = None, load_p_forecast: Optional[np.ndarray] = None, # TODO forecasts !! load_q_forecast: Optional[np.ndarray] = None, prod_p_forecast: Optional[np.ndarray] = None, prod_v_forecast: Optional[np.ndarray] = None, time_interval: timedelta = timedelta(minutes=5), max_iter: int = -1, start_datetime: datetime = datetime(year=2019, month=1, day=1), chunk_size: Optional[int] = None, i_start: Optional[int] = None, i_end: Optional[int] = None, # excluded, as always in python **kwargs ): GridValue.__init__( self, time_interval=time_interval, max_iter=max_iter, start_datetime=start_datetime, chunk_size=chunk_size, ) self._i_start: int = i_start if i_start is not None else 0 self.__new_istart: Optional[int] = i_start self.n_gen: int = prod_p.shape[1] self.n_load: int = load_p.shape[1] self.n_line: Union[int, None] = None self._load_p: np.ndarray = 1.0 * load_p self._load_q: np.ndarray = 1.0 * load_q self._prod_p: np.ndarray = 1.0 * prod_p self._prod_v = None if prod_v is not None: self._prod_v = 1.0 * prod_v self.__new_load_p: Optional[np.ndarray] = None self.__new_prod_p: Optional[np.ndarray] = None self.__new_prod_v: Optional[np.ndarray] = None self.__new_load_q: Optional[np.ndarray] = None self._i_end: int = i_end if i_end is not None else load_p.shape[0] self.__new_iend: Optional[int] = i_end self.has_maintenance = False self.maintenance = None self.maintenance_duration = None self.maintenance_time = None if maintenance is not None: self.has_maintenance = True self.n_line = maintenance.shape[1] assert load_p.shape[0] == maintenance.shape[0] self.maintenance = maintenance # TODO copy self.maintenance_time = ( np.zeros(shape=(self.maintenance.shape[0], self.n_line), dtype=dt_int) - 1 ) self.maintenance_duration = np.zeros( shape=(self.maintenance.shape[0], self.n_line), dtype=dt_int ) for line_id in range(self.n_line): self.maintenance_time[:, line_id] = self.get_maintenance_time_1d( self.maintenance[:, line_id] ) self.maintenance_duration[ :, line_id ] = self.get_maintenance_duration_1d(self.maintenance[:, line_id]) self.has_hazards = False self.hazards = None self.hazard_duration = None if hazards is not None: raise ChronicsError( "This feature is not available at the moment. Fill a github issue at " "https://github.com/rte-france/Grid2Op/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=" ) # self.has_hazards = True # if self.n_line is None: # self.n_line = hazards.shape[1] # else: # assert self.n_line == hazards.shape[1] # assert load_p.shape[0] == hazards.shape[0] # self.hazards = hazards # TODO copy ! # self.hazard_duration = np.zeros(shape=(self.hazards.shape[0], self.n_line), dtype=dt_int) # for line_id in range(self.n_line): # self.hazard_duration[:, line_id] = self.get_hazard_duration_1d(self.hazards[:, line_id]) self._forecasts = None if load_p_forecast is not None: assert load_q_forecast is not None assert prod_p_forecast is not None self._forecasts = FromNPY( load_p=load_p_forecast, load_q=load_q_forecast, prod_p=prod_p_forecast, prod_v=prod_v_forecast, load_p_forecast=None, load_q_forecast=None, prod_p_forecast=None, prod_v_forecast=None, i_start=i_start, i_end=i_end, ) elif load_q_forecast is not None: raise ChronicsError( "if load_q_forecast is not None, then load_p_forecast should not be None" ) elif prod_p_forecast is not None: raise ChronicsError( "if prod_p_forecast is not None, then load_p_forecast should not be None" )
[docs] def initialize( self, order_backend_loads, order_backend_prods, order_backend_lines, order_backend_subs, names_chronics_to_backend=None, ): assert len(order_backend_prods) == self.n_gen assert len(order_backend_loads) == self.n_load if self.n_line is None: self.n_line = len(order_backend_lines) else: assert len(order_backend_lines) == self.n_line if self._forecasts is not None: self._forecasts.initialize( order_backend_loads, order_backend_prods, order_backend_lines, order_backend_subs, names_chronics_to_backend, ) self.maintenance_time_nomaint = np.zeros(shape=(self.n_line,), dtype=dt_int) - 1 self.maintenance_duration_nomaint = np.zeros(shape=(self.n_line,), dtype=dt_int) self.hazard_duration_nohaz = np.zeros(shape=(self.n_line,), dtype=dt_int) self.curr_iter = 0 self.current_index = self._i_start - 1
def _get_long_hash(self, hash_: hashlib.blake2b = None): # get the "long hash" from blake2b if hash_ is None: hash_ = ( hashlib.blake2b() ) # should be faster than md5 ! (and safer, but we only care about speed here) hash_.update(self._load_p.tobytes()) hash_.update(self._load_q.tobytes()) hash_.update(self._prod_p.tobytes()) if self._prod_v is not None: hash_.update(self._prod_v.tobytes()) if self.maintenance is not None: hash_.update(self.maintenance.tobytes()) if self.hazards is not None: hash_.update(self.hazards.tobytes()) if self._forecasts: self._forecasts._get_long_hash(hash_) return hash_.digest()
[docs] def get_id(self) -> str: """ To return a unique ID of the chronics, we use a hash function (black2b), but it outputs a name too big (64 characters or so). So we hash it again with md5 to get a reasonable length id (32 characters) Returns: str: the hash of the arrays (load_p, load_q, etc.) in the chronics """ long_hash_byte = self._get_long_hash() # now shorten it with md5 short_hash = hashlib.md5(long_hash_byte) return short_hash.hexdigest()
@staticmethod def _create_dict_inj(res, obj_with_inj_data): dict_ = {} prod_v = None if obj_with_inj_data._load_p is not None: dict_["load_p"] = 1.0 * obj_with_inj_data._load_p[obj_with_inj_data.current_index, :] if obj_with_inj_data._load_q is not None: dict_["load_q"] = 1.0 * obj_with_inj_data._load_q[obj_with_inj_data.current_index, :] array_gen_p = obj_with_inj_data._gen_p if hasattr(obj_with_inj_data, "_gen_p") else obj_with_inj_data._prod_p if array_gen_p is not None: dict_["prod_p"] = 1.0 * array_gen_p[obj_with_inj_data.current_index, :] array_gen_v = obj_with_inj_data._gen_v if hasattr(obj_with_inj_data, "_gen_v") else obj_with_inj_data._prod_v if array_gen_v is not None: prod_v = 1.0 * array_gen_v[obj_with_inj_data.current_index, :] if dict_: res["injection"] = dict_ return prod_v @staticmethod def _create_dict_maintenance_hazards(res, obj_with_inj_data): if obj_with_inj_data.maintenance is not None and obj_with_inj_data.has_maintenance: res["maintenance"] = obj_with_inj_data.maintenance[obj_with_inj_data.current_index, :] if obj_with_inj_data.hazards is not None and obj_with_inj_data.has_hazards: res["hazards"] = obj_with_inj_data.hazards[obj_with_inj_data.current_index, :] if ( obj_with_inj_data.maintenance_time is not None and obj_with_inj_data.maintenance_duration is not None and obj_with_inj_data.has_maintenance ): maintenance_time = dt_int(1 * obj_with_inj_data.maintenance_time[obj_with_inj_data.current_index, :]) maintenance_duration = dt_int( 1 * obj_with_inj_data.maintenance_duration[obj_with_inj_data.current_index, :] ) else: maintenance_time = obj_with_inj_data.maintenance_time_nomaint maintenance_duration = obj_with_inj_data.maintenance_duration_nomaint if obj_with_inj_data.hazard_duration is not None and obj_with_inj_data.has_hazards: hazard_duration = 1 * obj_with_inj_data.hazard_duration[obj_with_inj_data.current_index, :] else: hazard_duration = obj_with_inj_data.hazard_duration_nohaz return maintenance_time, maintenance_duration, hazard_duration
[docs] def load_next(self): self.current_index += 1 if ( self.current_index > self._i_end or self.current_index >= self._load_p.shape[0] ): raise StopIteration res = {} prod_v = FromNPY._create_dict_inj(res, self) maintenance_time, maintenance_duration, hazard_duration = FromNPY._create_dict_maintenance_hazards(res, self) self.current_datetime += self.time_interval self.curr_iter += 1 return ( self.current_datetime, res, maintenance_time, maintenance_duration, hazard_duration, prod_v, )
[docs] def check_validity( self, backend: Optional["grid2op.Backend.backend.Backend"] ) -> None: # TODO raise the proper errors from ChronicsError here rather than AssertError assert self._load_p.shape[0] == self._load_q.shape[0] assert self._load_p.shape[0] == self._prod_p.shape[0] if self._prod_v is not None: assert self._load_p.shape[0] == self._prod_v.shape[0] if self.hazards is not None: assert self.hazards.shape[1] == self.n_line if self.maintenance is not None: assert self.maintenance.shape[1] == self.n_line if self.maintenance_duration is not None: assert self.n_line == self.maintenance_duration.shape[1] if self.maintenance_time is not None: assert self.n_line == self.maintenance_time.shape[1] # TODO forecast if self._forecasts is not None: assert self._forecasts.n_line == self.n_line assert self._forecasts.n_gen == self.n_gen assert self._forecasts.n_load == self.n_load assert self._load_p.shape[0] == self._forecasts._load_p.shape[0] assert self._load_q.shape[0] == self._forecasts._load_q.shape[0] assert self._prod_p.shape[0] == self._forecasts._prod_p.shape[0] if self._prod_v is not None and self._forecasts._prod_v is not None: assert self._prod_v.shape[0] == self._forecasts._prod_v.shape[0] self._forecasts.check_validity(backend=backend)
[docs] def next_chronics(self): # restart the chronics: read it again ! self.current_datetime = self.start_datetime self.curr_iter = 0 if self.__new_istart is not None: self._i_start = self.__new_istart else: self._i_start = 0 self.current_index = self._i_start if self.__new_load_p is not None: self._load_p = self.__new_load_p self.__new_load_p = None if self.__new_load_q is not None: self._load_q = self.__new_load_q self.__new_load_q = None if self.__new_prod_p is not None: self._prod_p = self.__new_prod_p self.__new_prod_p = None if self.__new_prod_v is not None: self._prod_v = self.__new_prod_v self.__new_prod_v = None if self.__new_iend is None: self._i_end = self._load_p.shape[0] else: self._i_end = self.__new_iend if self._forecasts is not None: # update the forecast self._forecasts.next_chronics() self.check_validity(backend=None)
[docs] def done(self): """ INTERNAL .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Compare to :func:`GridValue.done` an episode can be over for 2 main reasons: - :attr:`GridValue.max_iter` has been reached - There are no data in the numpy array. - i_end has been reached The episode is done if one of the above condition is met. Returns ------- res: ``bool`` Whether the episode has reached its end or not. """ res = False if ( self.current_index >= self._i_end or self.current_index >= self._load_p.shape[0] ): res = True elif self.max_iter > 0: if self.curr_iter > self.max_iter: res = True return res
[docs] def forecasts(self): """ By default, forecasts are only made 1 step ahead. We could change that. Do not hesitate to make a feature request (https://github.com/rte-france/Grid2Op/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=) if that is necessary for you. """ if self._forecasts is None: return [] self._forecasts.current_index = self.current_index - 1 dt, dict_, *rest = self._forecasts.load_next() return [(self.current_datetime + self.time_interval, dict_)]
[docs] def change_chronics( self, new_load_p: np.ndarray = None, new_load_q: np.ndarray = None, new_prod_p: np.ndarray = None, new_prod_v: np.ndarray = None, ): """ Allows to change the data used by this class. .. warning:: This has an effect only after "env.reset" has been called ! Args: new_load_p (np.ndarray, optional): change the load_p. Defaults to None (= do not change). new_load_q (np.ndarray, optional): change the load_q. Defaults to None (= do not change). new_prod_p (np.ndarray, optional): change the prod_p. Defaults to None (= do not change). new_prod_v (np.ndarray, optional): change the prod_v. Defaults to None (= do not change). Examples --------- .. code-block:: python import grid2op from grid2op.Chronics import FromNPY # create an environment as in this class description (in short: ) load_p = ... # find somehow a suitable "load_p" array: rows represent time, columns the individual load load_q = ... prod_p = ... prod_v = ... # now create an environment with these chronics: env = grid2op.make(env_name, chronics_class=FromNPY, data_feeding_kwargs={"load_p": load_p, "load_q": load_q, "prod_p": prod_p, "prod_v": prod_v} ) obs = env.reset() # obs.load_p is load_p[0] (or rather load_p[env.chronics_handler.real_data._i_start]) new_load_p = ... # find somehow a new suitable "load_p" new_load_q = ... new_prod_p = ... new_prod_v = ... env.chronics_handler.real_data.change_chronics(new_load_p, new_load_q, new_prod_p, new_prod_v) # has no effect at this stage obs = env.reset() # now has some effect ! # obs.load_p is new_load_p[0] (or rather load_p[env.chronics_handler.real_data._i_start]) """ if new_load_p is not None: self.__new_load_p = 1.0 * new_load_p if new_load_q is not None: self.__new_load_q = 1.0 * new_load_q if new_prod_p is not None: self.__new_prod_p = 1.0 * new_prod_p if new_prod_v is not None: self.__new_prod_v = 1.0 * new_prod_v
[docs] def change_forecasts( self, new_load_p: np.ndarray = None, new_load_q: np.ndarray = None, new_prod_p: np.ndarray = None, new_prod_v: np.ndarray = None, ): """ Allows to change the data used by this class in the "obs.simulate" function. .. warning:: This has an effect only after "env.reset" has been called ! Args: new_load_p (np.ndarray, optional): change the load_p_forecast. Defaults to None (= do not change). new_load_q (np.ndarray, optional): change the load_q_forecast. Defaults to None (= do not change). new_prod_p (np.ndarray, optional): change the prod_p_forecast. Defaults to None (= do not change). new_prod_v (np.ndarray, optional): change the prod_v_forecast. Defaults to None (= do not change). Examples --------- .. code-block:: python import grid2op from grid2op.Chronics import FromNPY # create an environment as in this class description (in short: ) load_p = ... # find somehow a suitable "load_p" array: rows represent time, columns the individual load load_q = ... prod_p = ... prod_v = ... load_p_forecast = ... load_q_forecast = ... prod_p_forecast = ... prod_v_forecast = ... env = grid2op.make(env_name, chronics_class=FromNPY, data_feeding_kwargs={"load_p": load_p, "load_q": load_q, "prod_p": prod_p, "prod_v": prod_v, "load_p_forecast": load_p_forecast "load_q_forecast": load_q_forecast "prod_p_forecast": prod_p_forecast "prod_v_forecast": prod_v_forecast }) new_load_p_forecast = ... # find somehow a new suitable "load_p" new_load_q_forecast = ... new_prod_p_forecast = ... new_prod_v_forecast = ... env.chronics_handler.real_data.change_forecasts(new_load_p_forecast, new_load_q_forecast, new_prod_p_forecast, new_prod_v_forecast) # has no effect at this stage obs = env.reset() # now has some effect ! sim_o, *_ = obs.simulate() # sim_o.load_p has the values of new_load_p_forecast[0] """ if self._forecasts is None: raise ChronicsError( "You cannot change the forecast for this chronics are there are no forecasts enabled" ) self._forecasts.change_chronics( new_load_p=new_load_p, new_load_q=new_load_q, new_prod_p=new_prod_p, new_prod_v=new_prod_v, )
[docs] def max_timestep(self): if self.max_iter >= 0: return min(self.max_iter, self._load_p.shape[0], self._i_end) return min(self._load_p.shape[0], self._i_end)
[docs] def change_i_start(self, new_i_start: Union[int, None]): """ Allows to change the "i_start". .. warning:: It has only an affect after "env.reset()" is called. Examples -------- .. code-block:: python import grid2op from grid2op.Chronics import FromNPY # create an environment as in this class description (in short: ) load_p = ... # find somehow a suitable "load_p" array: rows represent time, columns the individual load load_q = ... prod_p = ... prod_v = ... # now create an environment with these chronics: env = grid2op.make(env_name, chronics_class=FromNPY, data_feeding_kwargs={"load_p": load_p, "load_q": load_q, "prod_p": prod_p, "prod_v": prod_v} ) obs = env.reset() # obs.load_p is load_p[0] (or rather load_p[env.chronics_handler.real_data._i_start]) env.chronics_handler.real_data.change_i_start(10) obs = env.reset() # obs.load_p is load_p[10] # indeed `env.chronics_handler.real_data._i_start` has been changed to 10. # to undo all changes (and use the defaults) you can: # env.chronics_handler.real_data.change_i_start(None) """ if new_i_start is not None: self.__new_istart = int(new_i_start) else: self.__new_istart = None
[docs] def change_i_end(self, new_i_end: Union[int, None]): """ Allows to change the "i_end". .. warning:: It has only an affect after "env.reset()" is called. Examples -------- .. code-block:: python import grid2op from grid2op.Chronics import FromNPY # create an environment as in this class description (in short: ) load_p = ... # find somehow a suitable "load_p" array: rows represent time, columns the individual load load_q = ... prod_p = ... prod_v = ... # now create an environment with these chronics: env = grid2op.make(env_name, chronics_class=FromNPY, data_feeding_kwargs={"load_p": load_p, "load_q": load_q, "prod_p": prod_p, "prod_v": prod_v} ) obs = env.reset() env.chronics_handler.real_data.change_i_end(150) obs = env.reset() # indeed `env.chronics_handler.real_data._i_end` has been changed to 10. # scenario lenght will be at best 150 ! # to undo all changes (and use the defaults) you can: # env.chronics_handler.real_data.change_i_end(None) """ if new_i_end is not None: self.__new_iend = int(new_i_end) else: self.__new_iend = None